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Jets, stickiness, and anomalous transport
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Dynamical and statistical properties of the vortex and passive particle advection in chaotic flows generated
by 4- and 16-point vortices are investigated. General transport properties of these flows are found to be
anomalous and exhibit a superdiffusive behavior with typical second moment expordn?5. The origin of
this anomaly is traced to the presence of coherent structures within the flow, the vortex cores, and the region
far from where vortices are located. In the vicinity of these regions stickiness is observed and the motion of
tracers is quasiballistic. The chaotic nature of the underlying flow dictates the choice for thorough analysis of
transport properties. Passive tracer motion is analyzed by measuring the mutual relative evolution of two
nearby tracers. Some tracers travel in each other’s vicinity for relatively long times. This is related to a hidden
order for the tracers, which we call jets. Jets are localized and found in sticky regions. Their structure is
analyzed and found to be formed of a nested set of jets within jets. The analysis of the jet trapping time
statistics shows a quantitative agreement with the observed transport exponent.
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I. INTRODUCTION is, however, not so reductive and for numerous systems the
behavior~t#* with 0<u<2 or even more complicated is
Transport phenomena can vary from electrons in conductebserved: transport is so-called anomalous. These anomalous
ing materials, pollutants in the oceans or atmosphere, or evamroperties result from a subtle interplay of both the diffusive
data across the internet. Typically these phenomena are mosgd ballistic behaviors and are linked to Levy-type processes
often dealing with the transport of macroscopic scalar quanand their generalizatiofd—13.
tities, such as temperature or density; in other words, systems In this paper we address the question of motion of a pas-
for which the access to actual microscopic information issive tracer evolving in an unsteady incompressible two-
beyond reasonable means and in some regards overwhelmidgmensional flow. The underlying problem is related to the
if not useless. One of the first major steps towards a propearansport and mixing in fluids or, more specifically, geophys-
description of transport arose with the introduction of Fick'sical flows[14—20. In order to tackle this problem and espe-
and Fourier’s laws, which describe, respectively, the evolucially the anomalous features often observed in geophysical
tion of the density and heat current. Assuming further simflows, our approach has been gradual and the present work
plifications, both of these laws lead to the well-known heatfollows from a series of papef21-25, which consists of
equation and the related diffusion coefficient. The introduc-successive steps of the investigation of problems of transport
tion of the notion of Brownian motion and its associatedin two-dimensional flows from the dynamical point of view.
probabilistic description allowed one to link back this heatThe approach originates from the uncovering of the phenom-
equation to the microscopic world, which then is pictured asenon of chaotic advectioi26—34, which describes the pos-
a collection of random walkers. This may be a rather crudsible chaotic nature of Lagrangian trajectories in a noncha-
and oversimplified picture of the current problems related tatic velocity field and hence reflects a nonintuitive interplay
transport, but still today most of this probabilistic spirit re- between the Eulerian and Lagrangian perspective. The rise of
mains and in this sense the assumption of some underlyinghaos in these low-dimensional systems allows one to con-
randomness is often made. On the other hand, when consididerably enhance the mixing properties that would other-
ering dynamical systems, the “microscopic” quantities arewise have to rely on molecular diffusion. However, the non-
completely or almost completely deterministic and typically uniformity of the phase space and the presence of islands of
evolve with time in a ballistic or accelerated way. As a resultregular motion within the stochastic sea has considerable im-
there is a strong apparent dichotomy underlying the diffusivgpact on the transport properties of such systems. The phe-
or ballistic nature of transport. This dichotomy is directly nomenon of stickiness on the boundaries of the islands gen-
related to the properties of the underlying dynamics, and in @rates strong “memory effects” as a result of which transport
sense to whether or not the dynamics preserve or losbecomes anomalous. In this case the rise of anomalous trans-
memory. This diffusive or ballistic nature of transport for a port can be directly understood by the underlying dynamics,
given system is usually inferred by the time evolution of theand it makes possible a well-defined probabilistic description
second moment of its characteristic distribution, namely,  [24]. However, typical geophysical flows cannot, in general,
for a diffusive regime and-t? for the ballistic one. Nature be considered as low-dimensional systems, hence one is
tempted to consider the method of two-dimensional turbu-
lence(i.e., as high-dimensional system from the dynamical
*Electronic address: leoncini@cims.nyu.edu stand poink by introducing some noise term in order to sim-
"Electronic address: zaslav@cims.nyu.edu plify the dynamics of tracers and obtain different properties
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of this ad hocnoise by comparing analytical estimates with properties, such as the time-averaged spatial distribution and
experimental or numerical results. minimal intervortex distance, are computed numerically. We

The present approach tackles these problems from anothebserve and describe the formation of the pair and triplet of
perspective, namely, a relatively simple model is chosen andortices and obtain statistics of pairing times in a power-law
a thorough analysis of the dynamics of tracers is performedail, implying finite average of pairing times as well as strong
In other words, instead of introducing noise, we mask oumontrivial memory effects. The measured pairing-time distri-
ignorance by simplifying the actual system from the start and?ution exponent proves to be close to its proposed analytical
take a pure dynamical perspective on the problem. We peestimate. In Sec. IV, we consider the motion of a passive
lieve that we may, in this way, shed some light on the kinettracer in a fourl—vortex system and devglop a new methodol-
ics, which actually governs transport, and hence complemerfdy for studying the relative evolution of two nearby
the more traditional probabilistic description. To choose a StiCKy” tracers using a notion of chaotic j¢69]. The dis-
model, we emphasize another peculiarity of two-dimensionalfibution of trapping times within jets and the associated
turbulent flows, namely, the presence of the inverse energyy@Punov exponents are computed. The former exhibit a
cascade, which results in the emergence of coherent vorticeROWer-law tail. Chaotic jets are located and are directly
dominating the flow dynamicE35—41. For these systems linked to Fhe sticking behawor of_ t_racers; moreover, th_elr
point vortices have been used with some success to approxdiructure is analyzed, which exhibits a nested set of jets
mate the dynamics of finite-sized vortice42—44, such as within jets. The introduction of a “geometnp” Lyapunqv ex-
in punctuated Hamiltonian modelg}1,45,44. Moreover, ponent allows one tp characterize each stlcky zone indepen-
point vortices have recently been used to describe the exa8gntly. The method is then successfully applied to the system
unstationary two-dimensional solution of the Navier-Stoke<2f 16 vortices, leading to a possible dynamical mechanism of
equation[47]; we may thus also envision that the chaotic detecting co_herent structures._ln Sec. V, we consider trans-
motion of the vortices shall reproduce to some extent thd©rt properties of the 16 vortices as well as those of the
properties of a more realistic flow. It therefore seems naturaif@cers in both systems of 4 and 16 vortices. All are found to
to consider a system of point vortices as our paradigm. P& anomalous with characteristic expongnt 1.8, in good

In the previously mentioned work, the advection in sys-2greement with observed trapping times exponent and the
tems of three- and four-point vortices evolving on the plangkinetic theory discussed if24].
has been extensively investigatgtl—24. The three-point-
vortex system on the plane has the advantage of being an Il. VORTEX AND PASSIVE TRACER DYNAMICS
l;n;i%;gglr?g Srﬁé??nfen?r;r;tz%%e;:ﬂe. re_lt_tﬁis; {;esrtloglgpgﬂv; SZI_ _ Syst(_ams of point vorti.ces are exact solutions of the two-
lows the use of Poincam@aps to investigate the phase spaced'mens'maI Euler equation
of passive tracers whose motion belongs to the class of J
Hamiltonian systems of 3/2 degree of freedom. A well- E+[Q,\P]=O, (1)
defined stochastic sea filled with various islands of regular
motion is observed, and among these are special islands also AV =0 @)
known as “vortex cores” surrounding each of the three vor- '

tices. Transport in these systems is found to be anomalougnere () is the vorticity and¥ is the stream function. The

and the exponent characterizing the second moment exhibitg,ices describe the dynamics of the singular distribution of
a universal value close to 3/2, in agreement with an a”alys'%rticity

involving fractional kineticd23,24]. In this system, the ori-
gin of the anomalous properties and its multifractal nature is N

clearly linked to the existence of islands within the stochastic Q(z,H)= 2 K,8(z—2z,(1)), (©)]
sea and the phenomenon of stickiness observed around them a=1

[23,24]. The motion ofN-point vortices on the plane is ge-
nerically chaotic forN=4 [54-56. The periodicity is then
lost when considering a system of four vortices or more, bu
snapshots of the system have revealed that the cores s

where z locates a position in the complex plane,=x,

i iy, is the complex coordinate of the vortex andk,, is its
rength, in an ideal incompressible two-dimensional fluid.
his system can be described by a stream function acting as

. l51_Hamiltonian of a system o interacting particlegsee, for

ness around these cores has been obs¢RmdIn order to mstance, Refl60)), referre_d to. as a system oFpoint vor-
tices. The system’s evolution is

find out if these properties remain for a large number of
vortices, as well as if they may be at the origin of anomalous

features of the transport properties of these systems, a thor- | , _ _o; i 5 =i JH (a=1,...N)
ough analysis is required. ata gz, T a(Kaza) o
In the following we investigate the advection properties of (4)

passive tracers in flows generated by, respectively, 4 and 16 o

identical vortices. In Sec. Il, we recall briefly the dynamicswhere the couplek,z,,z,) are the conjugate variables of
of point vortices and of passive tracers. In Sec. Ill the dy-the HamiltonianH. The nature of the interaction depends on
namics of the system of 16 vortices is investigated and basithe geometry of the domain occupied by fluid. For the case
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of an unbounded plane, the resulting complex velocity field
v(z,t) at positionz and timet is given by the sum of the
individual vortex contributions as

N
1
2 Ke=— (5

1
DT A

and the Hamiltonian becomes
Fo.25¢

H= 1Ekk| = 1|A 6
__Za>ﬁa[3n|za Zg|= a5 nA. (6)

For the motion equation@}), the translational and rotational
invariance of the Hamiltoniam provides three other con-
served quantities, besides the energy,

N N
Q+iP=2 Kaz,, L2=2 K,lz,? (7)
a=1 a=1

Among the different integrals of motion, there are three in- . o . . )
dependent first integrals in involutiok, Q2+ P2 andL? FIG._1. Spatial density distribution of the vortl_ces obtained with
consequently, the motion of three vortices on the inﬁnitegne trajectory computed up to=10° (corresponding to 1:810°
plane is always integrable and chaos arises wient [50]. ata points Due to vortex nond'ﬁerem'at'.ofpermUtat'on Symme-
On the other hand, the evolution of a tracer is given by the?) 3nd the rotation invariance, the density depends only, o,
. . on the distance from the center of vorticity, and it is identical for
advection equation each individual vortex with the sane We notice a bell-shaped

- distribution, which is reminiscent of the Lamb-Oseen vortex.
z=v(z1), (8)

wherez(t) represents the position of the tracer at tivend 16 vortices, the phase space is considerably increased and
v(z,t) is the velocity field(5). For a point vortex system, the due to the long-range interaction between vortices, the en-
velocity field is given by Eq(5), and Eq.(8) can be rewritten  ergy does not behave as an extensive variable. However, the

in a Hamiltonian form as constant_? defined in Eq(7) seems to scale as,,,, where
I max IS the maximum distance reached between vortices, pro-

7= —2i ﬂ Z=2i ﬂ (9)  Vided that the origin of our systems correspond<QteiP
Jz 9z =0 and the vortex strengths are all equal and the vortices

have approximately a uniform distribution. In order to keep
some coherence between the 4-vortex system and the 16-
104 vortex one, we chose to keep the average area occupied by
V(z,z,t)=—— >, k, In|z—z,()] (100  each vortex approximately constant. The switch from 4 to 16
27 =1 vortices can then be thought of as increasing the domain with

where the stream function

nonzero vorticity while keeping the vorticity constant within
e patch; in other words, we choose neither to concentrate
nor to dilute vorticity while increasing the number of vorti-

In the following, we focus on systems wit=4 and ces. In light of this, we can write that the area occupied by

N=16 vortices. Due to the chaotic nature of the evolutionstN€ vortices is such thanfnava.N, and thUSLNNSIZ’ which
we rely heavily on numerical simulations. The trajectories of||ead3_ toL =64 forN=16 and is our choice fdr. The initial
the vortices as well as those of the passive tracers are intéondition is chosen randomly within a disk; we choose a
grated numerically using the fifth-order simplectic schemeconfiguration such that there are no vortices with close
described in[61] and which has already been successfullyneighborhoods to avoid any possible forced pairing. After

acts as a Hamiltonian. The stream function depends on tim
through the vortex coordinates(t), implying a nonautono-
mous system.

used in[21,23-24. that all positions are rescaled to match the conditien64.
The resulting simulation shows that the vortices are evolving
lll. 16-VORTEX SYSTEM FEATURES, PAIRING within a disk of radius~4 (see Fig. ], which corresponds to
PROPERTIES, AND SOME STATISTICS r2 JN~1. We recall that for the four-vortex system with

L=4, we haver?_ /N~1 too, and that the expressidn
~N?%2 s not correct for only four vortices.

We shall start by defining the system of 16 vortices, which We can see in Fig. 1 that the time-averaged spatial distri-
we will use to generate the flow advecting passive tracers. Abution of the point vortices is not uniform; it has a bell shape
we evolve from the four-vortex system described2®] to  that reminds us of an extended vortex, such as the Lamb-

A. Description of the system
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Oseen one. The stationary distribution illustrated in Fig. 1 is 2

a time averaged and, in general, it cannot be associated with

an extended stationary solution of the Euler equationWe

shall not go into further detail, but this nonuniformity by

concentrating vortices in the center is likely to lead to differ-

ences between the 4- and 16-vortex systems, especially re-

garding the minimum intervortex distance and the resulting

core size, which, as will be seen later, are both much smaller

in the 16-vortex system than in the 4-vortex one. 2
We now move on to vortex pairing and pairing-time dis-

tributions.

B. Minimum distance between vortices, vortex pairing,
and triplets

It has been found in Ref25] for a 4-vortex system that
the pairing of vortices dramatically influences the trapping of
tracers at the periphery of the vortex cores. Namely, the pair- 055 3 35 p 45
ing allows the sticky region around the cores to exchange Time
trapped tracers, while “opening the door” for new tracers to @)
be trapped or for some to escape. Since the same behavior
should occur with 16 vortices, we decided to investigate the
pairing behavior of the considered 16-vortex system. For this
purpose we carried out a simulation up te-10° and
checked the behavior of intervortex distances versus time.
The results indicate that long time vortex pairing exists and
one vortex pairing that lastst~10* is illustrated in Fig. 2.

We also note that during the pairing a triplet system of
three bound vorticgss formed for aboutAt~500. The phe-
nomenon of formations of triplets and pair of vortices con-
centrates vorticity in small regions of the platee Fig. 3

and in some sense is reminiscent of the inverse energy cas-
cade observed in two-dimensional turbulence. Since no qua-
druples are observed, we recall that both systems of two and
three vortices are integrable, and we may hence wonder
whether the observation of triplets and pairs is just pure co-
incidence or that the long memory effects associated with
stickiness are intimately linked to this type of behavior.

Namely, for passive tracers in the three-vortex systems, the 0 500 ‘ 700 ‘ 900
phenomenon of stickiness is associated with tracers that stay Time

a “long time” in the vicinity of an island and mimic the (b)

regular trajectory of tracers trapped within the island. This

notion was somewhat extended [iR5], where the pairing FIG. 2. Observation of a very long pairing of two vorticéa)

behavior in the four-vortex system was described as a stickAt~2x10*. We notice a bump in the pairing aroumer 4x 10°.

ing phenomenon to an object of lesser dimension than thé&nalysis of this bump reveals the formation of a triplet of vortices
whole phase space. However, we speak about the pairing i), which lasts about\t~450, which is still very large compared
the four-vortex system as a reduction to an integrable thredo typical time scales. Ita) the relative distance between vortices 1
vortex system. It is, therefore, tempting to generalize thisa_nd 6 is plotted versus time, while {b) we gdded also.the relative
behavior as a sticking phenomenon to an object of lessdfistance between vortices 1 and (tashed lingfor the time length
dimension than the actual phase space, but with some coff the observed bump.

straints. The subspace is reached by generating subsystems

whose integrability is a good approximation for a fairly long

time. In this light, stickiness would impose some conditionssimpler generalized notion of stickiness defined in
on the actual structure of potential clusters of vortices, fo{25,62,68. In any case, both the triplet and pairing events
instance, quadruples will be possible to encounter only if twadescribed in Fig. 2 correspond to a sticking behavior, as the
out of the four vortices are involved in a pairing on a smallersystem remains a long time on a given subset of the phase
scale, giving rise to a triplet on a larger scale. However, wespace. For comparison we mention that a typical time of an
have neither confirmed nor ruled out this scenario with theeddy turnover used ifil6] corresponds to a time of order
system of 16 vortices, and hence we shall keep for now that~1—5.
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FIG. 4. Distribution of integrated pairing timgsee definition
(11)] for the system of 16 vortices.
0.2}
C. Paring-time statistics
Af . . .

0 In the previously mentioned work®3,24), it has been
shown that the stickiness, providing long coherent motion,
leads to anomalous transport properties and distributions

> 0 with power-law tails. We will show how the vortex pairing is
related to the stickiness phenomenon and how it influences
the motion of passive tracers. Following the methodology
~0.1 and the results presented for four vorticed 25|, we con-
sider statistical data on pairing times for the 16-vortex sys-
tem, using the previously run simulation of vortex motion up

0.2 to time t=10°. The detection of pairing events is obtained

e with the same technique directly inspired by Fig. 2: a pairing
occurs if for a given length of time two vortices stay close

0.2 together. The results obtained for the four-vortex system
were independent of the arbitrary cutoffs chosen to charac-
terize a pairing event, hence we chose the arbitrary time
length to best=5 (this value does not affect the behavior of

FIG. 3. In this figure the relative positions of the vortices in- large pairing timg and the distance from one vortex to an-
volved in the pairing, corresponding to Fig. 2, are ploti@ishows  other is such that;; = |z, — z; |<1. To gather the statistics, we
the position of vortex 6 relative to vortex 1 versus tinfig. shows proceed as was done [85] and compute the the integrated

the positions of vortices 1, 6, and 16 relative to their center of e i .
A T . r ility N f pairings that last longer than a tinre
vorticity. In both cases we notice that the space occupied by thg obabilityN(7) of pairings that last longer than at

system has a typical radius of around 0.2, which is to be compared
to an average area occupied by each vortex-&f

Xort

(b)

o)

N(T):N(T>T)~f p(T)dT, (11

Finally, by detecting the pairing of vortices we were, at
the same time, able to measure the minimum distance be-
tween vortices. It was suggested [i57] that the minimum
distance can be a pretty good indicator of the double size ofvhere p(T)dT is the probability density that an event will
the vortex cores surrounding the vortid@el,25. We found  last a timeT. The results are shown in Fig. 4. The analysis of
out that min(;)~0.13, which implies that the core radius the distribution tail gives a power-law decay ®(7)
estimater, given by a half of the minimum of the intervortex ~ 7~ 7»"* with the pairing exponeny,~2.68+0.1 that con-
distance, should be of the order0.065. firms the non-negligible occurrence of long-lasting pairings.
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The behavior of the probability density of pairipgr) last- S8I'=6P65Q, (14)
ing a time 7 is obtained from Eq(11) as
where 5P and §Q are the values of the escaping trajectory.

dN 1 Since the trajectory is close to the island’s edgdlexion
p(T)~ -~ - (12 point), we can estimate from E§13)
6P~ 6Q%?, (15)

This behavior provides a finite mean pairing time, but the

second moment is infinite if the value of, can be extrapo- \yhere we have assumat(Q)~ Q3. Using this last expres-
lated. As suggested in the following section, pairing leads tgjon (15), we obtain for Eq(14)

one of the many forms of stickiness, hence the pairing times

are to link to the trapping time within a sticky domain of ST = 6Q%¥25Q~ 5Q°2. (16)
phase space and parameters.
In the following section, we provide an estimate gf. Due to the periodic or quasiperiodic nature of the trajectories
within the island, any sticking trajectorgin its neighbor-
D. Pairing exponent hood experiences a ballistic-type behavior, which translates
The main idea used to estimate the value of the paring';nto QL le.,
exponenty, follows the results presented in Ref§7] and ST ~152. 17)

[24]. The idea revolves around the presence of an island of

stability leading to ballistic or accelerator modes within thepe probability density of escaping the island vicinity after

island. These islands appear in the stochastic sea as a resylfing in its neighborhood for a tintei.e., time length of the

of a parabolic bifurcatior{63] and correspond to the so- pairing within an intervaldt is then

called tangled island®64,65. This is fairly general and it is

reasonable to link the sticky phenomenon of vortex pairing p(t)c /8T (t)~t %2 (18)

to the rise of an island in the stochastic sea, i.e., the forma-

tion of a virtual potential well for the dynamics of a pair of This result gives us directly the estimate of the exponent

vortices. Another way to validate this point of view comes y,~5/2, which is very close to the observed value 2.7

from the pair perspective. While the pair exists, an integrable:- 1.

system is formed which is perturbed by the flow generated Thjs estimate is not rigorous and is based on phenomeno-

by other vortices. To deal with the problem we use the gentogical grounds; however we believe it provides good insight

eral form of effective Hamiltonian proposed|[i63] (see also  into the origin of different characteristic exponents of trap-

[67] and[66]), ping time distributions. We now remind the reader that for

_ 2 the 4-vortex system the value observed25] for a charac-

Hert=b(AP)"~aAQ=V5(AQ), 13 teristic exponent way,~ 7/2. This value was explained in a

very similar way to that just developed but one more gener-

alized spatial coordinate was introduced. A 4-vortex system

is nongeneric. Indeed, as a pair is formed, the whole system

becomes a quasi-three-vortex system, the pair acting as one

vortex with increased strength, hence the remaining system

is itself integrable. In light of this, when switching to the

[dealized generalized variable®,Q), we should consider

fhore degrees of freedom to describe the pair of vortices,

namely,

whereAP andAQ are, respectively, the generalized momen-
tum and the generalized coordinate of the pair of vortices
the interaction potentiaV; is a third-order polynomial, and
a, b are constants. The higher-order termsA® can be
neglected for the effective Hamiltonian.

Let us assume that the pairing corresponds to the occu
rence of an island in the stochastic sea and that effectiv
regular trajectories of the pair can be described Hby;
given in Eqg. (13). This island has an elliptic poing,
=(P¢,Q¢). Since the island has a finite size, a typical tra- — 2 2
jectory £€=(P,Q), located within the island corresponds to Herr=Ca(APy) " Co(AP2) "+ Va(AQu AQ2). - (19
periodic or quasiperiodic dynamics and can be characterizegihe Hamiltonian(19) is, in general, nonintegral, and the ap-
by its relative coordinatesAQ,AP)=¢—&.. When the pearance of an island of stability adds an additional con-
boundary of the island is reached, the values of the generaktraint or integral of motion to the system governed by Eq.

ized coordinateg™ = (P*(t),Q* (t)) are such that the trajec- (19). Taking this constraint into account, the Hamiltonian
tory can access the whole stochastic sea, but cannot enter t() can be transformed into

island (the generalized phase space is two dimensjonal

The following steps are fairly formalsee alsd66] and Herr=C(AP)2+V3(AQ;,AQ,), (20)
[24]). Let us consider a trajectory which is close to the is-
land’s edge, which we monitor by the coordinateswhereAP is a new(collective momentum. The correspond-
(6P,6Q)=¢&—¢*. A small perturbation is then likely to al- ing phase volume of the escaping trajectories gives, in anal-
low the trajectory to “escape” from the island vicinity and ogy to Eq.(14),
consequently to destroy the vortex pair. The phase volume of
the escaping trajectory is o' = 6P 5Q,8Q,~ 8Q%%  (Q~68Q.). (21)
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This leads to the estimate of,~7/2, in contrast to Eq18)  within which they are computed. Moreover, FTLEs are not
with y,~5/2. Note that the extra spatial generalized coordi-unique for a given trajectory, which induces also a depen-
nate introduced if25] can also be thought of as a conse-dence on initial conditions,, as well as time if the system is
quence of having two different coexisting quasi-integrablenot autonomous. In the following, we shall note FTLE as
subsystems described by different actions, but linked as they, | but shall keep in mind that, = o (7, 9,X0.t).
cannot “live” without one another. One problem that may arise while computing these expo-
We now have a sufficient knowledge of the dynamics ofnents is related to the behavior oft). For instance, in the
the vortex systems, and move on to the behavior of passivgzse of a system of four identical point vortices, the motion

tracers generated by these flows. of tracers is more or less confined within a finite-sized region
andr (t) has an upper boundam(t), which may be depen-
V. JETS dent on time if radial diffusion occurs, and no matter what
initial distancer, and initial positionxy, oy —0 asr—».
A. Definitions This example is rather extreme and exaggerated as the results

As previously mentioned, the motion of point vortices is Presented in58] are able to capture the structure of the
chaotic for both systems of 4 or 16 vortices, but the use ofPace of initial conditions, but we bell_eve it illustrates clearly
Poincafemaps in these cases is impossible, in contrast t9N€ Problem encountered when using FTLE, namely, that
[21,23,24. To investigate the anomalous transport propertied (t) iS dependent on possible scales of the physical nature of
from the first principles, it is crucial to define a proper diag- € System. Itis likely that(t) is not always a smooth grow-
nostic that will be able to capture some singular properties of?d function of the time on the scale of an arbitrary time
the dynamics that are clues to the origin of the anomalou@nd jumps between different spatial scales with a potential
transport of passive tracers. physical meaning, which may get averaged with the time. We

For the system of 4-point vortices, successive snapshof@n anticipate that this may be the case especially when dif-
have shown that passive tracers can stick to the boundaries &rent regions of smalif not zerg Lyapunov exponents are
cores and jump from one core to another or escape from th"esent in the system. o
core due to their perturbations. The fact that a tracer is able From the preceding discussion it appears that FTLEs are
to escape from a core means that the surrounding regions 8fVing us overall good results in detecting coherent struc-
the cores are connected to the region of strong chaos. THEres and regions of low chaos, but may also hide by aver-
results presented ifi25] indicate that these regions mix 2ding out useful mformauon as a result of not capturing spe-
poorly with the region of strong chaos. One way to track thisCific scales. In the following, we propose an alternative
phenomenon is to use finite-time Lyapunov exponentdliagnostic, which is largely inspired by typical FTLE but has
(FTLE) and to eliminate domains of small values of thethe advantage of eliminating some of its shortcomings.
FTLE [58,69,70. Once these exponents are measured fronNamely, FTLE is a straightforward approximation of defini-
the tracers’ trajectories, whose initial conditions are covering{Ion (22) of the Lyapunov exponent, which is inherently non-
the plane, a scalar field distributed within the space of initiafocal. In other words, a Lyapunov exponent measures the
conditions is obtained and the two-dimensional plot of the'@veraged” exponential divergence of two nearby trajecto-
scalar field reveals regions of vanishing FTLE, namely, thei€s and, assuming the system is ergodic, it measures a de-
cores surrounding the vortices and the far-field region. Th@ree of “chaoticity” of the whole dynamics of the considered
cores are thus regions of small FTLE, meaning that twoSyStém. This nonlocality property may create serious diffi-
nearby trajectories are bound together for long times, despit%“'“es in Fh(_e interpretation o]‘ the results when the truncated
the core’s chaotic motion. These properties reveal typically &haracteristics of the dynamics have been used while for the
sharp change of the tracers dynamics as it crosses from ti§@nsidered time interval the ergodic theorem may not work
region of strong chaos to the core. This property is directlytS€& more discussion in R¢69]). _ _
linked to the method described [i68], which determines ~_ One possible way to circumvent this problem can be iden-
from a Lagrangian perspective the border of coherent strudified by the following remarks. Most of the time we are
tures in a turbulent flow. Namely, the method consists ind€aling with only a finite portion of a trajectoffinite time)
computing a scalar fieldtypically FTLE’S) and extracting an(_j onl)_/ have a fl_nlte s_patlal resolution of these pieces of
the coherent structures by finding the spatial extrema of thi§@jéctories, which is typically much smaller than the actual
scalar field. The difficulty with these types of approach re-Scales we are interested in. In this more practical situation,

sides in the definition of the Lyapunov exponent, we are facing a “coarse grair!ec_i" .phase space, and.each.point
is actually a ball from which infinitely many real trajectories
] 1 (7 can depart. Given these facts, we can imagine that two
o =lim lm —In—— (22)  nearby real trajectories diverge exponentially for a while but

o) — T r . . .
= 1(0)=0 0 then get closer again without actually leaving the ball, a pro-

cess which may take place over and over in the case of
wherer is the initial separation between two nearby trajec-stickiness. From the “coarse grained” perspective those two
tories andr () is the separation at time Indeed, definition real trajectories are identical. We can then infer that there
(22) introduces an arbitrary choice of two free parametersexists a bunch of nearby trajectories that may remain within
when computing FTLE, namely, the initial separation be-the ball for a given time, giving rise to what is calleded
tween two different trajectoriesy and the time intervalr  [59], and can be understood as a region of regular motion for
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FIG. 5. Atracer and a ghost are used to define a jet.

our scale of interestsee Fig. 5 We are then mostly inter-
ested in the chaotic properties of the system from the ball
scale and disregard any chaotic motion that may occur within
the jet. The stickiness to a coherent structure that is randomly
moving and not well determined in phase space implies the
existence of jets, while the opposite may not be the case.
To actually measure the jet's system properties, we use . . : . :
the following strategy. Let us consider a given trajectd(ty 0 0.2 04 %5 0.8 ! 12
evolving within the phase space. For each instaate con-
sider a ballB(r(t), 8) of radius & centered on our reference FIG. 6. Distribution of time Lyapunov exponentg [see Eq.
trajectory. We then start a number of trajectories within the(23)]. We note an exponential decay for high exponepisr,)
ball at a given time and measure the time it actually takes-exp(-oi /o) with o ~0.4. We can see a minimum around
them to escape the ball. Depending on how rapidly trajectoe =0.05. The observed accumulation near O results from the exis-
ries are escaping the ball, we should then be able to identifience of long-lived jets. The local minimum gives an estimate of the

if the reference trajectory is moving within a regular jet or is minimum typical time interval corresponding to a jéit,,;,~206.
in a region of strong chaos. Data are obtained with four different trajectories computed up to
=5x10f, leading to 328 220 records.

B. Statistical Results whole distribution function. We computed these exponents

From the numerical point of view, we first consider the for the flow generated by four vortices with the same initial
velocity field generated by the chaotic motion of four-point condition as the one used|iB5]. The data are obtained using
vortices and proceed as follows: given an initial condition ofthe trajectories of four different tracers initially placed in the
a tracer, two particles are placed in its neighborhood, at #gion of strong chaos and advected by the chaotic flow gen-
distancee=10"¢. We refer to such a particle as a “ghost”to erated by the motion of the four-point vortices of equal
differentiate it from the referenced tracer. More specifically,strength. The time of the simulation is&L0%, the time step
we placed one ghost on the tracer speed and the other one t0.05, which leads to statistics computed using.10° data
the orthogonal direction, but this positioning should not af-points. The results of the measured are illustrated in Fig.
fect the results. Then for each of the ghost particles, once %. In this plot, one can see two different types of behavior.
reaches a distanc&=0.03 (the radius of our ballfrom the First, the large FTLE decay exponentially with a charac-
tracer, the time intervaht and the distance travelells are  teristic exponentr_ ~0.4, which is not surprising, since the
recorded. For simplicity, two new ghost particles are placedpeed of the tracers is bounded. Hence even if the tracer and
within the ball once both have escaped, while the old oneshe ghost are going in opposite directions, it will always take
are discarded. One of the main difficulties in using this typethem a finite time to escape from the ball, thus an expected
of diagnostic lies in the fact that data acquisitioraipriori maximum value foro . Regarding the exponential decay
not linear in time or space and necessitates a careful choigsehavior before reaching this maximum value, we can sus-
for the values ok and é. Note that the value chosen féris pect it is directly related to the way the data is acquired;
small even compared to the minimum intervortex distanceindeed, we remind the reader that the acquisitioa fwiori
However, using definitior{22), we can compute a different nonlinear in time, and that we are in fact measuring escape
type of FTLE, which we define as follows: times from a given moving region of the phase space, and

since this behavior is related to the large FTLE’s, we are just
o :ilnf o :imf (23) observing the exponential growth of the coarse grained vol-
LAt € D7 As €’ ume.

The second behavior is, from the point of view of anoma-
where, contrary to the typical definitions, the value of thelous transport, more interesting. The local minimum for
logarithm is fixed andAt or As are the variables. These small FTLE can be seen in the probability densitygfas a
exponents are very similar to the notion of finite-size crossover from the erratic chaotic motion of the tracer within
Lyapunov exponentFSLE) considered in71]; however, we the chaotic region to its motion within a quasiregular jet.
do not perform averages over different scales and keep thieadeed, if the tracer is within the jet, the ghosts are neverthe-
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700 - - - - region, while by usingrp these dynamical differences are
erased and only the actual topology of the vicinity of a tra-
600} 1 jectory matters. Hence when using, to characterize a jet in
a small simulation, we obtained for the distribution of char-
acteristic speeds the histogram plotted in Fig. 7, where it
2l clearly shows that actual fast jets exist; had we used only
o, only a few fast jets would have been detected. In light of
=400} this, it seems thatrp« is a good candidate for identifying a
@ jet, while its averaged speed, /o gives a more refined
4 d )
ol idea of the nature of the jet.
C. Jets pictures
200t 1 Given the preceding results, we shall now have a closer
look at those jets. Namely, in the preceding sections we de-
sl fined what we considered a jet, computed statistics on them,
and using the results, we were able to obtain a threshold for
which a jet can be considered regular. We then just have to
00 i 5 3 J:- 5 apply these results. Let us initialize a tracer in the region of

AS/At strong chaos, but not in the vicinity of any vortex to avoid
any trapping within a core. We can let the tracer evolve with
FIG. 7. Distribution of the averaged speed of the tracer for thejts two ghosts nearby, once the threshold givenoﬁy is

df’;\ta corresponding top,<<0.03. We qbs.erve two regimes; the re- reached(ghosts are still within the ball for a given length
gime of fast speed corresponds to stickiness to the core. Note thatﬂ aveled, we know that the measuresh, will be such that
instead we user_ as a reference, most of the fast particles lie '

beyond the local minimum in the distribution and mostly only one Tp< 0D, hence we are currently within what we c.o.nS|dered
regime seems to be present. a regular jet. We then just have to record the position (_)f the
tracer and vortices until the ghosts have escaped. In this way
we are able to locate the tracer for a given length of time
less expected to escape from the tracer’s vicinity but withyhile it evolves within the jet. In fact, we shall be even more
trapping times exhibiting a power-law decay; therefore, if thechoosey, namely, we know from Fig. 7, that the majority of
passive tracer is evolving within a jet for a long time, we jets correspond to slow motion, which when plotted corre-
should expect an accumulations of events corresponding t§pond to the tracer being in the far-field region and simply
ghosts leaving the surrounding ball. This hypothesis is conrotating around the center of vorticity. Hence to avoid re-
firmed by analyzing the tail of the distribution of trapping cording the position of these events, we can also use the
times plotted. Using the data from Fig. 6, we measured &veraged speed, /o and record only the jets correspond-
power-law decay, with some oscillations and whose typica|ng to fast motion.
exponentp(t)~t~7 gives y~2.823. The analysis of a portion of a detected single fast jet is
We shall now discuss the reason why another Lyapunoy|justrated in Fig. 8. This jet corresponds to a trapping time
exponentrp was introduced in Eq23). By its definitionop  of the ghostsAt~560. Since we suspected that a jet would
measures how much the two trajectories diverge dependinge |ocated within the sticky zones surrounding the vortex
on how far along them we travel. It is then inherently time cores, we verified that the tracer is always in the vicinity of a
independent and can be seen as a pure geometric property\@rtex during the jet; moreover, we also note that during its
a trajectory or, from another point of view, time is locally evolution, the tracer jumps from one vortex to another. The
rescaled depending on the local speed, so that the spe@g jet resumes as follows: first the tracer is close to vortex
along the trajectory is constant and equal to one. The plot of | then it jumps to vortex 3, then to vortex 4, then back to
the distribution ofop gives the same picture as the one ob-yortex 3. This result is consistent with the observations made
tained foro_in Fig. 6, with an exponential decay and a local in [25] that the sticky zone is where all surrounding vortices
minimum o5~ 0.03 near zero, which also can be used as aeunite. The possibility of the formation of a pair of two
criterion for identifying a coherent jet. We may argue thatbound vortices as well as the role of these pairings allowing
since the speed is bounded and almost nonzero everywheteacers to jump between vortices as well as trapgfreging
the use ofop is redundant and therefore futile. Neverthelessthem within (from) sticking zones described [25] lead us
from a practical point of view, the interval of possible speedto assume that pairing was the cause of the odd behavior of
is rather large; for instance, in the case of the four-vortexhe tracer. This is confirmed in Fig(#, where the distance
system, the core has a typical radius of 0.2 while the outebetween the two concerned vortices is plotted and a pairing
region corresponds to radii of around 4. We can thus expeaif the two vortices is observed for the time interval ¥30
an order of magnitude between the different speeds withir<200.
the region of strong chaos and the outer region; moreover, The actual history of the jets is plotted in two different
we can expect an increase in the range as we increase theference frames in Fig. 8. Note that the absolute position of
number of vortices. It then becomes obvious that by measuthe tracer as it evolves in the jet looks random, hence we
ing o we are biased towards jets occurring in the outerplotted in Fig. 8b) the position of the tracer in the reference
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FIG. 8. Plots of tracer’s positions and relative distances for different times for an identified jet within the “strong chaos” area for which
At~560. Plot(a) shows the distance between the passive tracer and vortex 3 véthiengacer is referred to as particlg Plot (b) shows
the relative position of the tracer with respect to vortex 3; we observe the sticking habits of the trac@m stotvs the relative position
of the tracer with respect to the pair formed by vortices 3 and 4 during the pairing<¢¥5305). Plot(d) shows the distance between
vortices 3 and 4 vs time. We note that for this jet the passive tracer sticks to vortex cores. It can jump from core to core as vortices are pairing
but is always sticking to one core.

frame which is moving with vortex Rhe one with whom the effectively detected and is illustrated in Fig. 9, meaning that
tracers spend most of their time as seen in Fig)|8and the the method is relatively robust since in this 16-vortex system
sticking behavior of the tracer during the jets becomesghe cores are much smaller. In this last figure the fluctuations
clearer. In Fig. &), we plotted the position of the tracer of r, increase towards the end because a pairing occurs be-
during the pairing of vortices 3 and 4 observed in Figl)8n tween vortex 2 and another one; both ghosts have escaped
the reference frame whose origin is the center of vorticity ofout they may have jumped onto the other core while the
the pair and which rotates such that the vortices are stuclacer is still sticking, or vice versa. Besides this, we also get
oscillating in thex direction. The double jump from one from Fig. 9 the actual size of the core, which is typicaily

vortex back and forth and the exchange between cores i§0-044 and is within a reasonable range of the estimate
illustrated. given by the half of the minimum distance reached between

This visualization of the location of the jets has confirmedVOrtices min(;)/2~0.06, a fact which was also observed for
the results already illustrated j@5]—that the boundaries of 3- and 4-vortex systen|24,29. .
the core exhibit the stickiness. However, we would like to " the following section we will explore a little further the
emphasize the fact that in the present case, this property gptlon of the jets as coherent structures.
the system has been diagnosed with the use of coherent jets,
in other words, by analyzing the relative evolution of two
nearby trajectories within a specific scafhase space ball In the preceding section we were able to establish that a
In this sense the method used is rather general, whilg5h  given tracer was evolving within what we called a jet once a
a more detailed knowledge of the system was necessary tgiven thresholds, for the measured, was reached, and
capture its “hidden order.” To test the method even further,were then able to visualize the jet by recording the tracer’s
we decided to apply it to the system of 16 vortices consid-position. In the meantime, we could also record the positions
ered in Sec. lll. Given the previously obtained threshold forof the ghosts. We should be then able to gather some infor-
four vortices, we skipped the analysis of the distributions ofmation about the inner structure of the jet. This should incur
oL, op and used the similar values to attempt the detectiovery little numerical overload other than perhaps the need for
of a fast jet in the flow generated by 16 vortices. A jet ismore storage space.

D. Jet structure analysis
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FIG. 9. Distance between the tracer and vortices for coherent jets detected in the system of 16 vortices. The distance relative to vortex
2 is plotted.

In order to take advantage of this possibility, we lookedportant to define what quantities will be measured to charac-
for a longer lived jet, which, for the four-vortex case, wasterize the transport properties of the system. There has been
easier to find in the far-field region. Plots of such a long-evidence in58] of radial diffusion, but the diffusion coeffi-
lived jet are presented in Fig. 10, where we can see a fineientD vanishes aR— = with typical behavioD ~ 1/R®. In
structure within the jet, which seems to be formed of a hierthe case of more than four vortices, we can still expect a
archy of circular(tubulap jets within jets. Wondering if these similar type of behavior. However, the far-field region is of
features were general or specific to these four-vortex sydittle interest when one want to address the transport proper-
tems, we decided to consider the fast jet illustrated in Fig. Sies of typical geophysical flows, since the most relevant is
and check its structure. The results are plotted in Fig. 11the region being accessible to the vortices, i.e., the region of
where the relative position of the ghost is plotted with dif- “strong chaos.” In fact, the same problem was faced when
ferent shades of grain corresponding to different time periodsonsidering systems of three-point vortices. For these par-
of the life of the jets. We can see that effectively the nestedicular systems, the vortex motion is integrable, which re-
set of jets within jets remains, and that the ghost is alsatricts the accessible domain of tracers to within a finite re-
spiraling back and forth in between. This figure is also infor-gion surrounded by a Kol'mogorov-Arnol'd-Moser curve.
mative in the sense that we actually see the ghost going backhe way around this problem was then to measure how
very close to the tracer. In other words, the area characterizadany times a tracer rotates around the origin, in other words,
by the gray points close to the origin in Fig. 11 does notto measure the diffusion along an angular direction. How-
correspond to the beginning of the jet and, therefore, is nogéver, even though suitable, this solution may face some criti-
an artifact of having initially placed the ghost in the vicinity cism due to the singularity present at the origin. In this paper
of the tracer. we consider tracer transport in the way already used with

We shall close this section with a final remark on thissome success if24]. Namely, we use the arclengsft) of
“matroshka” structure of the jets. Namely, this nested struc-the path traveled by an individual tracer up to a tignehich
ture suggests that for each identified jet we can define a suiig
(r,), such thatr, is a decreasing function af with r,—0
andn—oo andr is, for instance, determined by the largest s(t)= ftv-(t’)dt'
tube (jet) seen in Fig. 10 or Fig. 11. To each suhjetve can ' o ! '
assign a distribution of trapping timg,(7) as well as a
transit timet,, (or a distribution associated with the tracer wherev,(t’) is the absolute speed of the particlat timet’.
spiraling from one subjen to one of its two neighbor®  One advantage of this quantity is that it is independent of the
—1 orn+1. In light of this, depending on the transport coordinate system and as such we can expect to infer intrin-
properties, the whole system is likely to depend on the dissic properties of the dynamics. The main observable charac-
tributionsp,(7) and the ratia,/r,; 1, and if we have in the teristics will be moments of the distansét) defined in Eq.
limit n—oc bothr,/r,;1—r. andp,(7)—p.(7), the FSLE  (24):
become effectively independent of scale within the jet. This
hierarchical structure is also reminiscent of the discrete Mq=<|si(t)—<si(t)>|q), (25
renormalization group and hence we can speculate that the
log-periodic oscillation described {Y2] may be observed. wherei corresponds to either théh vortex or a tracer in the

field of 4 or 16 vortices. The averaging operater - ) needs
V. TRANSPORT PROPERTIES a special comment. Expecting anomalous transport, one
should be ready to have infinite moments starting frgm
=(o. Specifically, it can be&y=2. The value ofg will vary

For the considered case, all vortices have positive strengtfiom 0 to 8. To avoid any difficulty with infinite moments,

and, therefore, are moving within a finite domain. It is im- we consider truncated distribution function

(24)

A. Definitions
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FIG. 10. Relative evolution of a ghost within a long-lived jet FIG. 11. Jet structure for a long-lived jet located in the region of
located in the far field region of the flow generated by four vortices.strong chaos for a system of 16 vorticéb) is a zoom of(a)
(a) is a centered zoom @b) (see the scal@sThe distribution within ~ corresponding to a magnification of an order of magnitude. The
the jet is clearly not uniform, suggesting a possible order organizedifferent shades characterize different moments of the life of the jet
as “matroshkas”(a nested set of jets with increasing radii corresponding to approximately equal time intervals. They chro-
nogically range as light, dark, and light. We see a similar structure
_ % of jets within a jet as observed in Fig. 10, and ghosts spiraling back
Pu(8)=0,  s>s. (28)  and forth between them,
Condition (26) was discussed in detail 73] to satisfy the the operation of averaging to be performed over truncated
physical restriction of a finite velocity. This condition put distributions. In this perspective all moments are finite and

some constraints on the maximum vabyfeof q correspond-  ON€ ¢an expect

) . L '
ing to the maximum time*, beyqnd which the moments are Mq:<|si(t)_<si(t)>|q>~Dqtﬂ(q) (27)
basically monitoring the population of almost ballistic trajec-

tories. with, generally,.(q) # g/2 as one would expect from normal

Up to the contraints mentioned, we will always considerdiffusion. The nonlinear dependence @{q) means multi-
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fractality of the transport. Some authors use the notion of 40 8 5
weak [u(q)=constxq] and strong [u«(q)#const<q] x o2
anomalous diffusion[69,700 or strong and weak self- :’530 6 ° o7
similarity [74]. For more information on the appearance of :,'/,20 T4
multifractal kinetics and related transport, $&&,76|. v =
10 2
B. Vortex transport properties in 16 vortex system - 0 0
Due to the low dimensionality of a system of four-point 1 2 log 3([) 4 0 2 3 6 8
vortices, no typical transport behavior has been measurec 10
but there is an analysis of the phase space topology ani 8 *
Poincaresectiong 25]. The results for 16 vortices were com- NTm ol ***
puted by using a number of different “equivalent” initial 3 g
conditions. Such different trajectories were obtained by let- ,\},' CH)
ting a given initial condition evolve and recording the posi- ¥ 6 =
tions of the vortices at different times with a given accuracy g 2
(typically 10 %), while making sure no vortices were ini- ~ 4
tially involved in pairings. The strong chaoticity of the sys- 1 2 3 4 % 2 4 & s
tem leads very rapidly to different trajectories while this l0g,,(t) q

hoi f initial conditions let k th nstant of mo-
choice o al conditions lets us keep the constant of mo FIG. 12. Plot of different transport properties of tracers in a

tions within a relatively small error. The transport properties . .
y bort prop 4-vortex system(a) the different moments vs time are plotted for

are th(_an obtained by a\{eraglpg over all vortices as well a§1=1/2,1, ...,8.(b) Long time exponent behavior for the different
over different sets of trajectories that correspond to our spe-

o . - - momentgsee Eq(25)], with u(2)~1.83 corresponding to a super-
cific arbitrary choice of the constants of motion. The results i sive regime.(c) Second moment vs time; the full line corre-

are presented in Fig. 14, Where_ the exponent characterlz_lr‘%onds to the full data, the dashed line is computed with all trajec-
the long time power-law behavior of different moments s yrjes except the parts sticking to vortices, and the dot-dashed line
plotted versus moment order. The actual value of the seconghresponds to all trajectories except the part sticking to the outer
moment, which is typically used to characterize the transporiegion. (d) Different exponents for partial data; *, outer region cut

properties, is measured to hg(2)~1.80 and indicates a (u,=1.7); +, vortex-sticking cut fs=1.85); in both cases the
strong superdiffusive behavior of the vortex subsystem. Thigransport is anomalous and superdiffusive.
behavior can be linked to the pairing of vortices, which in-

duces a strong quasiballistic dynamics of both vortices of th?ex cores, and the FTLE field presented8] shows that in
pair. Indeed, let us compare the expongrt2.68 character- the far-field region the motion of tracers is quasiballistic,

izing the distributi f time f hich vorti t d = = S .y .
1zing the diSTTIbution o1 Aime from Which VOrtices are frappe Whmh is a good indication of sticking behavior.

into a pair measured in Fig. 4, and the value corresponding t . . S
the second moment behavior from Fig. 13. We see good This conclusion can be strengthened by considering pre-

agreement with the expected law w(2)+ 1 [23,67. From viously described jets. We have seen that the jets are located
this observation we can conclude that the superdiffusive bell the sticky regions, and are either moving around cores and
havior of a vortex from the system of 16 vortices is related tdumping from core to core or rotating in the far-field region.
the pairing phenomenon. Now we shall investigate the propSince we now have “mobile” sticky regions traced by the
erties of tracers and we start with the chaotic flow generatetpng-lived jets, which we are able to monitor, we can esti-

by four vortices. mate that the sticking timé¢or trapping time in the sticky
zone is more-or-less similar to the time it takes for a ghost
C. Passive tracers in a 4-vortex system to escape a long-lived jet, hence the power-law behavior of

- . . the tail of the trapping time distribution characterize the ex-
The results describing the transport properties of passive :
onenty. We then actually observe an exceptional agree-

tracers are illustrated in Fig. 12. We also observe strong1 ¢ with th ted~ u(2)+ 1 relation. H .
anomalous behavior for the tracers with an exponent for th ent wi € expec ee_j/~,u(_ ) relation. Hence since
the notion of jet as defined in Sec. IV is relatively general

second momenf(2)=~1.82. This behavior was previously X i )
observed if23] for integrable flows driven by three vorti- When compared to the notion of core or far-field region, we
ces. In this latter case, the origin of the anomalous behavio?'h_aII say that the gnomalous dlffu?lon finds its origin in the
was directly linked to the presence of islands of regular mo€xistence of long-lived “coherent” jets of passive tracers for
tion within the stochastic sea and the phenomenon of stickithe chaotic flow generated by four vortices. Since we know
ness observed around them. In the present case the drivifigat two different types of jets exissee Fig. 7 and are able
flow is chaotic but nevertheless the existence of cores suto differentiate them easily, in a similar manner as for the
rounding the vortices and the far-field region allows a direct3-vortex cas¢23,24 we are able to quantify the influence of
analogy and we may say that the tracer meets similar strueach type of jet on the transport properties of the system by
tures. The only difference is that some of the structure elediscarding tracers evolving within a given type of jets. The
ments (the corep are “mobile.” Moreover, the previous results of this analysis are presented in Fig. 12, plotsind
study[23,25 shows that tracers effectively stick to the vor- (d). We can conclude that both types of jets give
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FIG. 13. Local snapshot of the system of 16 vortices with 9
X 10* tracers. The vortices are located with the ™sign. We can 8 . . .
see the cores surrounding the vortices. The snapshot is taken early
in the simulation to prevent too much dispersion of the tracers and
to visualize the core. As a consequence, we can expect the actual
sizes of the cores to be a little smaller than the radius~ef.1 that °
one can measure on the snapshot.

rise to anomalous transport with very similar characteristic 5r ° 1
exponents and that they both contribute to the observed
strong anomalous diffusion.

wa)
H

D. Passive tracers in a 16-vortex system 3t -

In both previous cases we observed a signature of anoma-
lous superdiffusion withw(2)~1.8. Let us now investigate 2r 1
the transport properties of passive tracers in a flow generated
by 16 identical point vortices, described partially in Sec. Ill. 1+ 1
There are long-lived jets within the region of strong chaos
(see Fig. 1] for the flow and the detected jet lives in the 0 s
vicinity of a vortex and probably sticks to its core. A snap- 0 2 3 6 8
shot of the system at an early stage is given in Fig. 13, which
results describing the transport properties of passive trace$s(t)—(s(t))|9)~t*@. In (a) the flow of 16-point vortices, with
are presented in Fig. 14 and show strong anomalous behavigi2)~1.80 while in(b) the tracer moments for the flow driven by
with the exponenu(2)=1.77. the 16-point vortices, withw(2)~ 1.77 (the slope for smalf is 1.75

Even though we only consider one arbitrary initial condi- and for largeq is 1.95).
tion of the vortex system, it is reasonable to assume that the
transport properties obtained for such a system are fairlgoal of this work was to provide qualitative insight into gen-
general in the sense that they persist with an increase in tffal transport properties of two-dimensional flows, especially
number of vortices if the probability of pairing persists. That9eophysical ones, imposed by the topology of the phase
implies the possibility of neglecting the occurrence of morespace. The system of 16 vortices can be considered as a
complicated long-lived clustering, such as the triplet ob-fairly large system while the 4-vortex system is the minimal

served in Fig. 2, quadruples, etc. one with chaotic dynamics of the vortices. The time-
averaged spatial distribution of the vortices is characterized
V1. CONCLUSION AND DISCUSSIONS by a nonuniform density of vorticity, which implies strong

vortex-vortex correlation. These correlations manifest them-
In this paper we have investigated the dynamical and staselves by way of a phenomenon of stickiness, namely, the
tistical properties of the vortex and passive particle advectiofiormation of long-lived pairs of vortices, triplets, etc. Since
in chaotic flows generated by 4- and 16-point vortices. Theboth these structures are integrable, we can speculate that the
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stickiness occurs by forming quasi-integrable subsets. Theortex case, and thus can be incorporated into the general
clusters of vortices can form a hierarchical or nested set ofiotion of the phenomenon of stickiness. The differentiation
integrable subsets and hence impose some constraints on thetween the two possible types of jets is determined entirely
frame of possible larger structures involving more vorticesby the ratio of the corresponding pair of Lyapunov expo-
The statistics of pairing time exhibits a power-law tail con- nents. We thus obtainde factodiagnostic to locate coherent
firming in that way the sticky nature of the phenomenon,structures. The method is then successfully applied to the
which in return allows us to make an analogy with an idealsystem of 16 vortices, leading to a possible general dynami-
dynamical system and give a good analytical estimate of theal mechanism of detecting coherent structures. Further
characteristic exponent of the pairing time distribution. analysis of the structure of the jets itself reveals a compli-
The chaotic nature of the governing flows did not allow cated nested structure of jets within jets, which indicates that
the use of diagnostics, such as Poinaaagps or distribution jets exist at different scales. The distribution of trapping
of recurrences, commonly used for systems with 1-1/2 detimes within jets is computed and shows a power-law tail
grees of freedom, hence a technique inspired by finite-timevhose characteristic exponent is similar to the one observed
Lyapunov exponents diagnostics has been put into placdor vortex pairing time. Since the trapping in jets is also a
Passive tracer motion is analyzed by measuring the mutuatickiness phenomenon, we may assume that the analytical
relative evolution of two nearby tracers. The possibility of estimate given for the vortex pairing time is also valid for the
tracers traveling in each other’s vicinity for relatively large trapping time within jets. The transport properties of the 16
times confirmed the presence of a hidden order for the tracvortices as well as those of the tracers in both systems of 4
ers, which we call jets. The jets can be understood as movingnd 16 vortices are found to be anomalous with characteristic
clusters of particles within a specific domain where the mo-exponentu~1.75-1.8. We would like to mention that the
tion is almost regular from a coarse-grained perspective. Theimilarities found between the exponents for the tracers and
chaotic nature of the motion is confined within the characthe vortices in the 16-vortex system render plausible a cau-
teristic scale of a given jet, where nearby tracers are trappedality relationship between the pairing of vortices and tracers
The distribution of trapping times in the jets shows a power-being trapped within regular jets. All these results are in
law tail whose characteristic exponent is quantitatively verygood agreement with the characteristic exponents of trapping
similar to the one related to pairing times. The calculatedimes and the kinetic theory presented in R€f23,24].
Lyapunov exponent for tracers within the jet's exponents aréMoreover, the transport properties are all of the multifractal
similar to what is called finite-sized Lyapunov expongft],  type or strongly anomalous in the sense defined in Refs.
but in our calculations no average is taken and thus a distri69,70. This property of the transport is a consequence of
bution is obtained. These distributions of the Lyapunov exthe existence of different sticky zones and the related struc-
ponents exhibit a finite local minimum, which results from tures in phase space.
the competition of the trapping in jets and the strongly cha-
otic motion outs_ide the jets._Th(_a exi_st.ence of this minimur_n ACKNOWLEDGMENTS
allows a dynamical test, which identifies whether a tracer is
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