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Jets, stickiness, and anomalous transport
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Dynamical and statistical properties of the vortex and passive particle advection in chaotic flows generated
by 4- and 16-point vortices are investigated. General transport properties of these flows are found to be
anomalous and exhibit a superdiffusive behavior with typical second moment exponentm;1.75. The origin of
this anomaly is traced to the presence of coherent structures within the flow, the vortex cores, and the region
far from where vortices are located. In the vicinity of these regions stickiness is observed and the motion of
tracers is quasiballistic. The chaotic nature of the underlying flow dictates the choice for thorough analysis of
transport properties. Passive tracer motion is analyzed by measuring the mutual relative evolution of two
nearby tracers. Some tracers travel in each other’s vicinity for relatively long times. This is related to a hidden
order for the tracers, which we call jets. Jets are localized and found in sticky regions. Their structure is
analyzed and found to be formed of a nested set of jets within jets. The analysis of the jet trapping time
statistics shows a quantitative agreement with the observed transport exponent.
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I. INTRODUCTION

Transport phenomena can vary from electrons in cond
ing materials, pollutants in the oceans or atmosphere, or e
data across the internet. Typically these phenomena are m
often dealing with the transport of macroscopic scalar qu
tities, such as temperature or density; in other words, syst
for which the access to actual microscopic information
beyond reasonable means and in some regards overwhel
if not useless. One of the first major steps towards a pro
description of transport arose with the introduction of Fic
and Fourier’s laws, which describe, respectively, the evo
tion of the density and heat current. Assuming further s
plifications, both of these laws lead to the well-known he
equation and the related diffusion coefficient. The introd
tion of the notion of Brownian motion and its associat
probabilistic description allowed one to link back this he
equation to the microscopic world, which then is pictured
a collection of random walkers. This may be a rather cru
and oversimplified picture of the current problems related
transport, but still today most of this probabilistic spirit r
mains and in this sense the assumption of some underl
randomness is often made. On the other hand, when con
ering dynamical systems, the ‘‘microscopic’’ quantities a
completely or almost completely deterministic and typica
evolve with time in a ballistic or accelerated way. As a res
there is a strong apparent dichotomy underlying the diffus
or ballistic nature of transport. This dichotomy is direct
related to the properties of the underlying dynamics, and
sense to whether or not the dynamics preserve or
memory. This diffusive or ballistic nature of transport for
given system is usually inferred by the time evolution of t
second moment of its characteristic distribution, namely,;t
for a diffusive regime and;t2 for the ballistic one. Nature
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is, however, not so reductive and for numerous systems
behavior;tm with 0,m,2 or even more complicated i
observed: transport is so-called anomalous. These anoma
properties result from a subtle interplay of both the diffusi
and ballistic behaviors and are linked to Levy-type proces
and their generalizations@1–13#.

In this paper we address the question of motion of a p
sive tracer evolving in an unsteady incompressible tw
dimensional flow. The underlying problem is related to t
transport and mixing in fluids or, more specifically, geophy
ical flows @14–20#. In order to tackle this problem and esp
cially the anomalous features often observed in geophys
flows, our approach has been gradual and the present w
follows from a series of papers@21–25#, which consists of
successive steps of the investigation of problems of trans
in two-dimensional flows from the dynamical point of view
The approach originates from the uncovering of the pheno
enon of chaotic advection@26–34#, which describes the pos
sible chaotic nature of Lagrangian trajectories in a nonc
otic velocity field and hence reflects a nonintuitive interpl
between the Eulerian and Lagrangian perspective. The ris
chaos in these low-dimensional systems allows one to c
siderably enhance the mixing properties that would oth
wise have to rely on molecular diffusion. However, the no
uniformity of the phase space and the presence of island
regular motion within the stochastic sea has considerable
pact on the transport properties of such systems. The p
nomenon of stickiness on the boundaries of the islands g
erates strong ‘‘memory effects’’ as a result of which transp
becomes anomalous. In this case the rise of anomalous tr
port can be directly understood by the underlying dynam
and it makes possible a well-defined probabilistic descript
@24#. However, typical geophysical flows cannot, in gener
be considered as low-dimensional systems, hence on
tempted to consider the method of two-dimensional tur
lence ~i.e., as high-dimensional system from the dynami
stand point! by introducing some noise term in order to sim
plify the dynamics of tracers and obtain different propert
©2002 The American Physical Society16-1
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of this ad hocnoise by comparing analytical estimates w
experimental or numerical results.

The present approach tackles these problems from ano
perspective, namely, a relatively simple model is chosen
a thorough analysis of the dynamics of tracers is perform
In other words, instead of introducing noise, we mask
ignorance by simplifying the actual system from the start a
take a pure dynamical perspective on the problem. We
lieve that we may, in this way, shed some light on the kin
ics, which actually governs transport, and hence complem
the more traditional probabilistic description. To choose
model, we emphasize another peculiarity of two-dimensio
turbulent flows, namely, the presence of the inverse ene
cascade, which results in the emergence of coherent vort
dominating the flow dynamics@35–41#. For these system
point vortices have been used with some success to app
mate the dynamics of finite-sized vortices@42–44#, such as
in punctuated Hamiltonian models@41,45,46#. Moreover,
point vortices have recently been used to describe the e
unstationary two-dimensional solution of the Navier-Stok
equation@47#; we may thus also envision that the chao
motion of the vortices shall reproduce to some extent
properties of a more realistic flow. It therefore seems natu
to consider a system of point vortices as our paradigm.

In the previously mentioned work, the advection in sy
tems of three- and four-point vortices evolving on the pla
has been extensively investigated@21–24#. The three-point-
vortex system on the plane has the advantage of being
integrable system and often generates periodic flows~in a
co-rotating reference frame! @48–53#. This last property al-
lows the use of Poincare´ maps to investigate the phase spa
of passive tracers whose motion belongs to the class
Hamiltonian systems of 3/2 degree of freedom. A we
defined stochastic sea filled with various islands of regu
motion is observed, and among these are special islands
known as ‘‘vortex cores’’ surrounding each of the three v
tices. Transport in these systems is found to be anomal
and the exponent characterizing the second moment exh
a universal value close to 3/2, in agreement with an anal
involving fractional kinetics@23,24#. In this system, the ori-
gin of the anomalous properties and its multifractal nature
clearly linked to the existence of islands within the stocha
sea and the phenomenon of stickiness observed around
@23,24#. The motion ofN-point vortices on the plane is ge
nerically chaotic forN>4 @54–56#. The periodicity is then
lost when considering a system of four vortices or more,
snapshots of the system have revealed that the cores
rounding vortices are robust features@57,58#, the actual ac-
cessible phase space is in this sense nonuniform and s
ness around these cores has been observed@25#. In order to
find out if these properties remain for a large number
vortices, as well as if they may be at the origin of anomalo
features of the transport properties of these systems, a
ough analysis is required.

In the following we investigate the advection properties
passive tracers in flows generated by, respectively, 4 an
identical vortices. In Sec. II, we recall briefly the dynami
of point vortices and of passive tracers. In Sec. III the d
namics of the system of 16 vortices is investigated and b
04621
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properties, such as the time-averaged spatial distribution
minimal intervortex distance, are computed numerically. W
observe and describe the formation of the pair and triple
vortices and obtain statistics of pairing times in a power-l
tail, implying finite average of pairing times as well as stro
nontrivial memory effects. The measured pairing-time dis
bution exponent proves to be close to its proposed analy
estimate. In Sec. IV, we consider the motion of a pass
tracer in a four-vortex system and develop a new method
ogy for studying the relative evolution of two nearb
‘‘sticky’’ tracers using a notion of chaotic jet@59#. The dis-
tribution of trapping times within jets and the associat
Lyapunov exponents are computed. The former exhibi
power-law tail. Chaotic jets are located and are direc
linked to the sticking behavior of tracers; moreover, th
structure is analyzed, which exhibits a nested set of
within jets. The introduction of a ‘‘geometric’’ Lyapunov ex
ponent allows one to characterize each sticky zone indep
dently. The method is then successfully applied to the sys
of 16 vortices, leading to a possible dynamical mechanism
detecting coherent structures. In Sec. V, we consider tra
port properties of the 16 vortices as well as those of
tracers in both systems of 4 and 16 vortices. All are found
be anomalous with characteristic exponentm;1.8, in good
agreement with observed trapping times exponent and
kinetic theory discussed in@24#.

II. VORTEX AND PASSIVE TRACER DYNAMICS

Systems of point vortices are exact solutions of the tw
dimensional Euler equation

]V

]t
1@V,C#50 , ~1!

DC5V, ~2!

whereV is the vorticity andC is the stream function. The
vortices describe the dynamics of the singular distribution
vorticity

V~z,t !5 (
a51

N

kad„z2za~ t !…, ~3!

where z locates a position in the complex plane,za5xa
1 iya is the complex coordinate of the vortexa, andka is its
strength, in an ideal incompressible two-dimensional flu
This system can be described by a stream function actin
a Hamiltonian of a system ofN interacting particles~see, for
instance, Ref.@60#!, referred to as a system ofN-point vor-
tices. The system’s evolution is

każa522i
]H

] z̄a

, zGa52i
]H

]~kaza!
~a51, . . . ,N!,

~4!

where the couple (kaza ,z̄a) are the conjugate variables o
the HamiltonianH. The nature of the interaction depends
the geometry of the domain occupied by fluid. For the ca
6-2
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JETS, STICKINESS, AND ANOMALOUS TRANSPORT PHYSICAL REVIEW E65 046216
of an unbounded plane, the resulting complex velocity fi
v(z,t) at positionz and timet is given by the sum of the
individual vortex contributions as

v~z,t !5
1

2p i (
a51

N

ka

1

z̄2 z̄a~ t !
, ~5!

and the Hamiltonian becomes

H52
1

2p (
a.b

kakb lnuza2zbu[2
1

4p
ln L. ~6!

For the motion equations~4!, the translational and rotationa
invariance of the HamiltonianH provides three other con
served quantities, besides the energy,

Q1 iP5 (
a51

N

kaza , L25 (
a51

N

kauzau2. ~7!

Among the different integrals of motion, there are three
dependent first integrals in involution:H, Q21P2 , andL2;
consequently, the motion of three vortices on the infin
plane is always integrable and chaos arises whenN>4 @50#.

On the other hand, the evolution of a tracer is given by
advection equation

ż5v~z,t !, ~8!

wherez(t) represents the position of the tracer at timet and
v(z,t) is the velocity field~5!. For a point vortex system, th
velocity field is given by Eq.~5!, and Eq.~8! can be rewritten
in a Hamiltonian form as

ż522i
]C

] z̄
, ż̄52i

]C

]z
, ~9!

where the stream function

C~z,z̄,t !52
1

2p (
a51

4

ka lnuz2za~ t !u ~10!

acts as a Hamiltonian. The stream function depends on
through the vortex coordinatesza(t), implying a nonautono-
mous system.

In the following, we focus on systems withN54 and
N516 vortices. Due to the chaotic nature of the evolutio
we rely heavily on numerical simulations. The trajectories
the vortices as well as those of the passive tracers are
grated numerically using the fifth-order simplectic sche
described in@61# and which has already been successfu
used in@21,23–25#.

III. 16-VORTEX SYSTEM FEATURES, PAIRING
PROPERTIES, AND SOME STATISTICS

A. Description of the system

We shall start by defining the system of 16 vortices, wh
we will use to generate the flow advecting passive tracers
we evolve from the four-vortex system described in@25# to
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16 vortices, the phase space is considerably increased
due to the long-range interaction between vortices, the
ergy does not behave as an extensive variable. However
constantL2 defined in Eq.~7! seems to scale asr max

3 , where
r max is the maximum distance reached between vortices, p
vided that the origin of our systems corresponds toQ1 iP
50 and the vortex strengths are all equal and the vorti
have approximately a uniform distribution. In order to ke
some coherence between the 4-vortex system and the
vortex one, we chose to keep the average area occupie
each vortex approximately constant. The switch from 4 to
vortices can then be thought of as increasing the domain w
nonzero vorticity while keeping the vorticity constant with
the patch; in other words, we choose neither to concent
nor to dilute vorticity while increasing the number of vort
ces. In light of this, we can write that the area occupied
the vortices is such thatr max

2 ;N, and thusL;N3/2, which
leads toL564 for N516 and is our choice forL. The initial
condition is chosen randomly within a disk; we choose
configuration such that there are no vortices with clo
neighborhoods to avoid any possible forced pairing. Af
that all positions are rescaled to match the conditionL564.
The resulting simulation shows that the vortices are evolv
within a disk of radius;4 ~see Fig. 1!, which corresponds to
r max

2 /N;1. We recall that for the four-vortex system wit
L54, we haver max

2 /N;1 too, and that the expressionL
;N3/2 is not correct for only four vortices.

We can see in Fig. 1 that the time-averaged spatial dis
bution of the point vortices is not uniform; it has a bell sha
that reminds us of an extended vortex, such as the La

FIG. 1. Spatial density distribution of the vortices obtained w
one trajectory computed up tot5105 ~corresponding to 1.63106

data points!. Due to vortex nondifferentiation~permutation symme-
try! and the rotation invariance, the density depends only onr , i.e.,
on the distance from the center of vorticity, and it is identical f
each individual vortex with the samer. We notice a bell-shaped
distribution, which is reminiscent of the Lamb-Oseen vortex.
6-3
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Oseen one. The stationary distribution illustrated in Fig. 1
a time averaged and, in general, it cannot be associated
an extended stationary solution of the Euler equation~1!. We
shall not go into further detail, but this nonuniformity b
concentrating vortices in the center is likely to lead to diffe
ences between the 4- and 16-vortex systems, especiall
garding the minimum intervortex distance and the result
core size, which, as will be seen later, are both much sma
in the 16-vortex system than in the 4-vortex one.

We now move on to vortex pairing and pairing-time d
tributions.

B. Minimum distance between vortices, vortex pairing,
and triplets

It has been found in Ref.@25# for a 4-vortex system tha
the pairing of vortices dramatically influences the trapping
tracers at the periphery of the vortex cores. Namely, the p
ing allows the sticky region around the cores to excha
trapped tracers, while ‘‘opening the door’’ for new tracers
be trapped or for some to escape. Since the same beh
should occur with 16 vortices, we decided to investigate
pairing behavior of the considered 16-vortex system. For
purpose we carried out a simulation up tot5105 and
checked the behavior of intervortex distances versus ti
The results indicate that long time vortex pairing exists a
one vortex pairing that lastsDt;104 is illustrated in Fig. 2.
We also note that during the pairing a triplet~a system of
three bound vortices! is formed for aboutDt;500. The phe-
nomenon of formations of triplets and pair of vortices co
centrates vorticity in small regions of the plane~see Fig. 3!
and in some sense is reminiscent of the inverse energy
cade observed in two-dimensional turbulence. Since no q
druples are observed, we recall that both systems of two
three vortices are integrable, and we may hence won
whether the observation of triplets and pairs is just pure
incidence or that the long memory effects associated w
stickiness are intimately linked to this type of behavi
Namely, for passive tracers in the three-vortex systems,
phenomenon of stickiness is associated with tracers that
a ‘‘long time’’ in the vicinity of an island and mimic the
regular trajectory of tracers trapped within the island. T
notion was somewhat extended in@25#, where the pairing
behavior in the four-vortex system was described as a st
ing phenomenon to an object of lesser dimension than
whole phase space. However, we speak about the pairin
the four-vortex system as a reduction to an integrable th
vortex system. It is, therefore, tempting to generalize t
behavior as a sticking phenomenon to an object of les
dimension than the actual phase space, but with some
straints. The subspace is reached by generating subsys
whose integrability is a good approximation for a fairly lon
time. In this light, stickiness would impose some conditio
on the actual structure of potential clusters of vortices,
instance, quadruples will be possible to encounter only if t
out of the four vortices are involved in a pairing on a smal
scale, giving rise to a triplet on a larger scale. However,
have neither confirmed nor ruled out this scenario with
system of 16 vortices, and hence we shall keep for now
04621
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simpler generalized notion of stickiness defined
@25,62,66#. In any case, both the triplet and pairing even
described in Fig. 2 correspond to a sticking behavior, as
system remains a long time on a given subset of the ph
space. For comparison we mention that a typical time of
eddy turnover used in@16# corresponds to a time of orde
Dt;125.

FIG. 2. Observation of a very long pairing of two vortices:~a!
Dt'23104. We notice a bump in the pairing aroundt543104.
Analysis of this bump reveals the formation of a triplet of vortic
~b!, which lasts aboutDt'450, which is still very large compared
to typical time scales. In~a! the relative distance between vortices
and 6 is plotted versus time, while in~b! we added also the relative
distance between vortices 1 and 16~dashed line! for the time length
of the observed bump.
6-4
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Finally, by detecting the pairing of vortices we were,
the same time, able to measure the minimum distance
tween vortices. It was suggested in@57# that the minimum
distance can be a pretty good indicator of the double siz
the vortex cores surrounding the vortices@24,25#. We found
out that min(rij)'0.13, which implies that the core radiu
estimater, given by a half of the minimum of the intervorte
distance, should be of the orderr;0.065.

FIG. 3. In this figure the relative positions of the vortices i
volved in the pairing, corresponding to Fig. 2, are plotted.~a! shows
the position of vortex 6 relative to vortex 1 versus time.~b! shows
the positions of vortices 1, 6, and 16 relative to their center
vorticity. In both cases we notice that the space occupied by
system has a typical radius of around 0.2, which is to be comp
to an average area occupied by each vortex of;1.
04621
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C. Paring-time statistics

In the previously mentioned works@23,24#, it has been
shown that the stickiness, providing long coherent moti
leads to anomalous transport properties and distributi
with power-law tails. We will show how the vortex pairing i
related to the stickiness phenomenon and how it influen
the motion of passive tracers. Following the methodolo
and the results presented for four vortices in@25#, we con-
sider statistical data on pairing times for the 16-vortex s
tem, using the previously run simulation of vortex motion
to time t5105. The detection of pairing events is obtaine
with the same technique directly inspired by Fig. 2: a pairi
occurs if for a given length of time two vortices stay clo
together. The results obtained for the four-vortex syst
were independent of the arbitrary cutoffs chosen to cha
terize a pairing event, hence we chose the arbitrary t
length to bedt55 ~this value does not affect the behavior
large pairing time!, and the distance from one vortex to a
other is such thatr i j 5uzi2zj u<1. To gather the statistics, w
proceed as was done in@25# and compute the the integrate
probability N(t) of pairings that last longer than a timet

N~t!5N~T.t!;E
t

`

r~T!dT, ~11!

wherer(T)dT is the probability density that an event wi
last a timeT. The results are shown in Fig. 4. The analysis
the distribution tail gives a power-law decay ofN(t)
;t2gp11 with the pairing exponentgp;2.6860.1 that con-
firms the non-negligible occurrence of long-lasting pairing

f
e

ed

FIG. 4. Distribution of integrated pairing times@see definition
~11!# for the system of 16 vortices.
6-5
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The behavior of the probability density of pairingr(t) last-
ing a timet is obtained from Eq.~11! as

r~t!;
dN

dt
;

1

tgp
. ~12!

This behavior provides a finite mean pairing time, but t
second moment is infinite if the value ofgp can be extrapo-
lated. As suggested in the following section, pairing leads
one of the many forms of stickiness, hence the pairing tim
are to link to the trapping time within a sticky domain
phase space and parameters.

In the following section, we provide an estimate ofgp .

D. Pairing exponent

The main idea used to estimate the value of the pa
exponentgp follows the results presented in Refs.@67# and
@24#. The idea revolves around the presence of an islan
stability leading to ballistic or accelerator modes within t
island. These islands appear in the stochastic sea as a
of a parabolic bifurcation@63# and correspond to the so
called tangled islands@64,65#. This is fairly general and it is
reasonable to link the sticky phenomenon of vortex pair
to the rise of an island in the stochastic sea, i.e., the for
tion of a virtual potential well for the dynamics of a pair o
vortices. Another way to validate this point of view com
from the pair perspective. While the pair exists, an integra
system is formed which is perturbed by the flow genera
by other vortices. To deal with the problem we use the g
eral form of effective Hamiltonian proposed in@63# ~see also
@67# and @66#!,

He f f5b~DP!22aDQ2V3~DQ!, ~13!

whereDP andDQ are, respectively, the generalized mome
tum and the generalized coordinate of the pair of vortic
the interaction potentialV3 is a third-order polynomial, and
a, b are constants. The higher-order terms inDQ can be
neglected for the effective Hamiltonian.

Let us assume that the pairing corresponds to the oc
rence of an island in the stochastic sea and that effec
regular trajectories of the pair can be described byHe f f
given in Eq. ~13!. This island has an elliptic pointje
5(Pe ,Qe). Since the island has a finite size, a typical t
jectory j5(P,Q), located within the island corresponds
periodic or quasiperiodic dynamics and can be character
by its relative coordinates (DQ,DP)5j2je . When the
boundary of the island is reached, the values of the gene
ized coordinatesj* 5„P* (t),Q* (t)… are such that the trajec
tory can access the whole stochastic sea, but cannot ente
island ~the generalized phase space is two dimensional!.

The following steps are fairly formal~see also@66# and
@24#!. Let us consider a trajectory which is close to the
land’s edge, which we monitor by the coordinat
(dP,dQ)5j2j* . A small perturbation is then likely to al
low the trajectory to ‘‘escape’’ from the island vicinity an
consequently to destroy the vortex pair. The phase volum
the escaping trajectory is
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dG5dPdQ, ~14!

wheredP anddQ are the values of the escaping trajecto
Since the trajectory is close to the island’s edge~inflexion
point!, we can estimate from Eq.~13!

dP;dQ3/2, ~15!

where we have assumedV3(Q);Q3. Using this last expres-
sion ~15!, we obtain for Eq.~14!

dG5dQ3/2dQ;dQ5/2. ~16!

Due to the periodic or quasiperiodic nature of the trajector
within the island, any sticking trajectory~in its neighbor-
hood! experiences a ballistic-type behavior, which transla
into dQ;t, i.e.,

dG;t5/2. ~17!

The probability density of escaping the island vicinity aft
being in its neighborhood for a timet ~i.e., time length of the
pairing! within an intervaldt is then

r~ t !}1/dG~ t !;t25/2. ~18!

This result gives us directly the estimate of the expon
gp'5/2, which is very close to the observed value 2
60.1.

This estimate is not rigorous and is based on phenome
logical grounds; however we believe it provides good insig
into the origin of different characteristic exponents of tra
ping time distributions. We now remind the reader that
the 4-vortex system the value observed in@25# for a charac-
teristic exponent wasgp'7/2. This value was explained in
very similar way to that just developed but one more gen
alized spatial coordinate was introduced. A 4-vortex syst
is nongeneric. Indeed, as a pair is formed, the whole sys
becomes a quasi-three-vortex system, the pair acting as
vortex with increased strength, hence the remaining sys
is itself integrable. In light of this, when switching to th
idealized generalized variables (P,Q), we should consider
more degrees of freedom to describe the pair of vortic
namely,

He f f5c1~DP1!21c2~DP2!21V3~DQ1 ,DQ2!. ~19!

The Hamiltonian~19! is, in general, nonintegral, and the a
pearance of an island of stability adds an additional c
straint or integral of motion to the system governed by E
~19!. Taking this constraint into account, the Hamiltonia
~19! can be transformed into

He f f5c~DP!21V3~DQ1 ,DQ2!, ~20!

whereDP is a new~collective! momentum. The correspond
ing phase volume of the escaping trajectories gives, in a
ogy to Eq.~14!,

dG5dPdQ1dQ2;dQ5/2 ~Q;dQ1,2!. ~21!
6-6
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This leads to the estimate ofgp'7/2, in contrast to Eq.~18!
with gp'5/2. Note that the extra spatial generalized coor
nate introduced in@25# can also be thought of as a cons
quence of having two different coexisting quasi-integra
subsystems described by different actions, but linked as
cannot ‘‘live’’ without one another.

We now have a sufficient knowledge of the dynamics
the vortex systems, and move on to the behavior of pas
tracers generated by these flows.

IV. JETS

A. Definitions

As previously mentioned, the motion of point vortices
chaotic for both systems of 4 or 16 vortices, but the use
Poincare´ maps in these cases is impossible, in contras
@21,23,24#. To investigate the anomalous transport proper
from the first principles, it is crucial to define a proper dia
nostic that will be able to capture some singular propertie
the dynamics that are clues to the origin of the anomal
transport of passive tracers.

For the system of 4-point vortices, successive snaps
have shown that passive tracers can stick to the boundari
cores and jump from one core to another or escape from
core due to their perturbations. The fact that a tracer is a
to escape from a core means that the surrounding region
the cores are connected to the region of strong chaos.
results presented in@25# indicate that these regions mi
poorly with the region of strong chaos. One way to track t
phenomenon is to use finite-time Lyapunov expone
~FTLE! and to eliminate domains of small values of t
FTLE @58,69,70#. Once these exponents are measured fr
the tracers’ trajectories, whose initial conditions are cover
the plane, a scalar field distributed within the space of ini
conditions is obtained and the two-dimensional plot of
scalar field reveals regions of vanishing FTLE, namely,
cores surrounding the vortices and the far-field region. T
cores are thus regions of small FTLE, meaning that t
nearby trajectories are bound together for long times, des
the core’s chaotic motion. These properties reveal typical
sharp change of the tracers dynamics as it crosses from
region of strong chaos to the core. This property is direc
linked to the method described in@68#, which determines
from a Lagrangian perspective the border of coherent st
tures in a turbulent flow. Namely, the method consists
computing a scalar field~typically FTLE’s! and extracting
the coherent structures by finding the spatial extrema of
scalar field. The difficulty with these types of approach
sides in the definition of the Lyapunov exponent,

sL5 lim
t→`

lim
r (0)→0

1

t
ln

r ~t!

r 0
, ~22!

wherer 0 is the initial separation between two nearby traje
tories andr (t) is the separation at timet. Indeed, definition
~22! introduces an arbitrary choice of two free paramet
when computing FTLE, namely, the initial separation b
tween two different trajectoriesr 0 and the time intervalt
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within which they are computed. Moreover, FTLEs are n
unique for a given trajectory, which induces also a dep
dence on initial conditionsx0, as well as time if the system i
not autonomous. In the following, we shall note FTLE
sL , but shall keep in mind thatsL5sL(t,r 0 ,x0 ,t).

One problem that may arise while computing these ex
nents is related to the behavior ofr (t). For instance, in the
case of a system of four identical point vortices, the mot
of tracers is more or less confined within a finite-sized reg
andr (t) has an upper boundaryR(t), which may be depen-
dent on time if radial diffusion occurs, and no matter wh
initial distancer 0 and initial positionx0 , sL→0 ast→`.
This example is rather extreme and exaggerated as the re
presented in@58# are able to capture the structure of th
space of initial conditions, but we believe it illustrates clea
one problem encountered when using FTLE, namely, t
r (t) is dependent on possible scales of the physical natur
the system. It is likely thatr (t) is not always a smooth grow
ing function of the time on the scale of an arbitrary timet
and jumps between different spatial scales with a poten
physical meaning, which may get averaged with the time.
can anticipate that this may be the case especially when
ferent regions of small~if not zero! Lyapunov exponents are
present in the system.

From the preceding discussion it appears that FTLEs
giving us overall good results in detecting coherent str
tures and regions of low chaos, but may also hide by av
aging out useful information as a result of not capturing s
cific scales. In the following, we propose an alternati
diagnostic, which is largely inspired by typical FTLE but h
the advantage of eliminating some of its shortcomin
Namely, FTLE is a straightforward approximation of defin
tion ~22! of the Lyapunov exponent, which is inherently no
local. In other words, a Lyapunov exponent measures
‘‘averaged’’ exponential divergence of two nearby trajec
ries and, assuming the system is ergodic, it measures a
gree of ‘‘chaoticity’’ of the whole dynamics of the considere
system. This nonlocality property may create serious di
culties in the interpretation of the results when the trunca
characteristics of the dynamics have been used while for
considered time interval the ergodic theorem may not w
~see more discussion in Ref.@59#!.

One possible way to circumvent this problem can be id
tified by the following remarks. Most of the time we ar
dealing with only a finite portion of a trajectory~finite time!
and only have a finite spatial resolution of these pieces
trajectories, which is typically much smaller than the actu
scales we are interested in. In this more practical situat
we are facing a ‘‘coarse grained’’ phase space, and each p
is actually a ball from which infinitely many real trajectorie
can depart. Given these facts, we can imagine that
nearby real trajectories diverge exponentially for a while b
then get closer again without actually leaving the ball, a p
cess which may take place over and over in the case
stickiness. From the ‘‘coarse grained’’ perspective those t
real trajectories are identical. We can then infer that th
exists a bunch of nearby trajectories that may remain wit
the ball for a given time, giving rise to what is called ajet
@59#, and can be understood as a region of regular motion
6-7
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XAVIER LEONCINI AND GEORGE M. ZASLAVSKY PHYSICAL REVIEW E65 046216
our scale of interest~see Fig. 5!. We are then mostly inter
ested in the chaotic properties of the system from the
scale and disregard any chaotic motion that may occur wi
the jet. The stickiness to a coherent structure that is rando
moving and not well determined in phase space implies
existence of jets, while the opposite may not be the case

To actually measure the jet’s system properties, we
the following strategy. Let us consider a given trajectoryr (t)
evolving within the phase space. For each instantt, we con-
sider a ballB„r (t),d… of radiusd centered on our referenc
trajectory. We then start a number of trajectories within
ball at a given time and measure the time it actually ta
them to escape the ball. Depending on how rapidly trajec
ries are escaping the ball, we should then be able to iden
if the reference trajectory is moving within a regular jet or
in a region of strong chaos.

B. Statistical Results

From the numerical point of view, we first consider th
velocity field generated by the chaotic motion of four-po
vortices and proceed as follows: given an initial condition
a tracer, two particles are placed in its neighborhood, a
distancee51026 . We refer to such a particle as a ‘‘ghost’’ t
differentiate it from the referenced tracer. More specifica
we placed one ghost on the tracer speed and the other on
the orthogonal direction, but this positioning should not
fect the results. Then for each of the ghost particles, onc
reaches a distanced50.03 ~the radius of our ball! from the
tracer, the time intervalDt and the distance traveledDs are
recorded. For simplicity, two new ghost particles are plac
within the ball once both have escaped, while the old o
are discarded. One of the main difficulties in using this ty
of diagnostic lies in the fact that data acquisition isa priori
not linear in time or space and necessitates a careful ch
for the values ofe andd. Note that the value chosen ford is
small even compared to the minimum intervortex distan
However, using definition~22!, we can compute a differen
type of FTLE, which we define as follows:

sL5
1

Dt
ln

d

e
, sD5

1

Ds
ln

d

e
, ~23!

where, contrary to the typical definitions, the value of t
logarithm is fixed andDt or Ds are the variables. Thes
exponents are very similar to the notion of finite-si
Lyapunov exponent~FSLE! considered in@71#; however, we
do not perform averages over different scales and keep

FIG. 5. A tracer and a ghost are used to define a jet.
04621
ll
in
ly
e

e

e
s
-

fy

t
f
a

,
on

-
it

d
s

e

ce

.

he

whole distribution function. We computed these expone
for the flow generated by four vortices with the same init
condition as the one used in@25#. The data are obtained usin
the trajectories of four different tracers initially placed in th
region of strong chaos and advected by the chaotic flow g
erated by the motion of the four-point vortices of equ
strength. The time of the simulation is 53106, the time step
is 0.05, which leads to statistics computed using;3.105 data
points. The results of the measuredsL are illustrated in Fig.
6. In this plot, one can see two different types of behavio

First, the large FTLE decay exponentially with a chara
teristic exponentsL0

'0.4, which is not surprising, since th
speed of the tracers is bounded. Hence even if the tracer
the ghost are going in opposite directions, it will always ta
them a finite time to escape from the ball, thus an expec
maximum value forsL . Regarding the exponential deca
behavior before reaching this maximum value, we can s
pect it is directly related to the way the data is acquire
indeed, we remind the reader that the acquisition isa priori
nonlinear in time, and that we are in fact measuring esc
times from a given moving region of the phase space,
since this behavior is related to the large FTLE’s, we are j
observing the exponential growth of the coarse grained v
ume.

The second behavior is, from the point of view of anom
lous transport, more interesting. The local minimum f
small FTLE can be seen in the probability density ofsL as a
crossover from the erratic chaotic motion of the tracer with
the chaotic region to its motion within a quasiregular j
Indeed, if the tracer is within the jet, the ghosts are nevert

FIG. 6. Distribution of time Lyapunov exponentssL @see Eq.
~23!#. We note an exponential decay for high exponents.r(sL)
;exp(2sL /sL0

) with sL0
'0.4. We can see a minimum aroun

sL'0.05. The observed accumulation near 0 results from the e
tence of long-lived jets. The local minimum gives an estimate of
minimum typical time interval corresponding to a jet:Dtmin'206.
Data are obtained with four different trajectories computed up tt
553106 , leading to 328 220 records.
6-8
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JETS, STICKINESS, AND ANOMALOUS TRANSPORT PHYSICAL REVIEW E65 046216
less expected to escape from the tracer’s vicinity but w
trapping times exhibiting a power-law decay; therefore, if t
passive tracer is evolving within a jet for a long time, w
should expect an accumulations of events correspondin
ghosts leaving the surrounding ball. This hypothesis is c
firmed by analyzing the tail of the distribution of trappin
times plotted. Using the data from Fig. 6, we measure
power-law decay, with some oscillations and whose typi
exponentr(t);t2g givesg'2.823.

We shall now discuss the reason why another Lyapu
exponentsD was introduced in Eq.~23!. By its definitionsD
measures how much the two trajectories diverge depen
on how far along them we travel. It is then inherently tim
independent and can be seen as a pure geometric prope
a trajectory or, from another point of view, time is local
rescaled depending on the local speed, so that the s
along the trajectory is constant and equal to one. The plo
the distribution ofsD gives the same picture as the one o
tained forsL in Fig. 6, with an exponential decay and a loc
minimum sD* ;0.03 near zero, which also can be used a
criterion for identifying a coherent jet. We may argue th
since the speed is bounded and almost nonzero everyw
the use ofsD is redundant and therefore futile. Neverthele
from a practical point of view, the interval of possible spe
is rather large; for instance, in the case of the four-vor
system, the core has a typical radius of 0.2 while the ou
region corresponds to radii of around 4. We can thus exp
an order of magnitude between the different speeds wi
the region of strong chaos and the outer region; moreo
we can expect an increase in the range as we increas
number of vortices. It then becomes obvious that by mea
ing sL we are biased towards jets occurring in the ou

FIG. 7. Distribution of the averaged speed of the tracer for
data corresponding tosD,0.03. We observe two regimes; the r
gime of fast speed corresponds to stickiness to the core. Note th
instead we usesL as a reference, most of the fast particles
beyond the local minimum in the distribution and mostly only o
regime seems to be present.
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region, while by usingsD these dynamical differences ar
erased and only the actual topology of the vicinity of a t
jectory matters. Hence when usingsD* to characterize a jet in
a small simulation, we obtained for the distribution of cha
acteristic speeds the histogram plotted in Fig. 7, where
clearly shows that actual fast jets exist; had we used o
sL , only a few fast jets would have been detected. In light
this, it seems thatsD* is a good candidate for identifying
jet, while its averaged speedsL /sD gives a more refined
idea of the nature of the jet.

C. Jets pictures

Given the preceding results, we shall now have a clo
look at those jets. Namely, in the preceding sections we
fined what we considered a jet, computed statistics on th
and using the results, we were able to obtain a threshold
which a jet can be considered regular. We then just hav
apply these results. Let us initialize a tracer in the region
strong chaos, but not in the vicinity of any vortex to avo
any trapping within a core. We can let the tracer evolve w
its two ghosts nearby, once the threshold given bysD* is
reached~ghosts are still within the ball for a given lengt
traveled!, we know that the measuredsD will be such that
sD,sD* , hence we are currently within what we consider
a regular jet. We then just have to record the position of
tracer and vortices until the ghosts have escaped. In this
we are able to locate the tracer for a given length of ti
while it evolves within the jet. In fact, we shall be even mo
choosey, namely, we know from Fig. 7, that the majority
jets correspond to slow motion, which when plotted cor
spond to the tracer being in the far-field region and sim
rotating around the center of vorticity. Hence to avoid r
cording the position of these events, we can also use
averaged speedsL /sD and record only the jets correspon
ing to fast motion.

The analysis of a portion of a detected single fast je
illustrated in Fig. 8. This jet corresponds to a trapping tim
of the ghostsDt'560. Since we suspected that a jet wou
be located within the sticky zones surrounding the vor
cores, we verified that the tracer is always in the vicinity o
vortex during the jet; moreover, we also note that during
evolution, the tracer jumps from one vortex to another. T
full jet resumes as follows: first the tracer is close to vort
1, then it jumps to vortex 3, then to vortex 4, then back
vortex 3. This result is consistent with the observations m
in @25# that the sticky zone is where all surrounding vortic
reunite. The possibility of the formation of a pair of tw
bound vortices as well as the role of these pairings allow
tracers to jump between vortices as well as trapping~freeing!
them within ~from! sticking zones described in@25# lead us
to assume that pairing was the cause of the odd behavio
the tracer. This is confirmed in Fig. 8~d!, where the distance
between the two concerned vortices is plotted and a pai
of the two vortices is observed for the time interval 150,t
,200.

The actual history of the jets is plotted in two differe
reference frames in Fig. 8. Note that the absolute position
the tracer as it evolves in the jet looks random, hence
plotted in Fig. 8~b! the position of the tracer in the referenc

e

t if
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FIG. 8. Plots of tracer’s positions and relative distances for different times for an identified jet within the ‘‘strong chaos’’ area for
Dt'560. Plot~a! shows the distance between the passive tracer and vortex 3 vs time~the tracer is referred to as particle 5!. Plot ~b! shows
the relative position of the tracer with respect to vortex 3; we observe the sticking habits of the tracer. Plot~c! shows the relative position
of the tracer with respect to the pair formed by vortices 3 and 4 during the pairing (153,t,205). Plot~d! shows the distance betwee
vortices 3 and 4 vs time. We note that for this jet the passive tracer sticks to vortex cores. It can jump from core to core as vortices a
but is always sticking to one core.
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frame which is moving with vortex 3@the one with whom the
tracers spend most of their time as seen in Fig. 8~a!#, and the
sticking behavior of the tracer during the jets becom
clearer. In Fig. 8~c!, we plotted the position of the trace
during the pairing of vortices 3 and 4 observed in Fig. 8~d! in
the reference frame whose origin is the center of vorticity
the pair and which rotates such that the vortices are s
oscillating in thex direction. The double jump from on
vortex back and forth and the exchange between core
illustrated.

This visualization of the location of the jets has confirm
the results already illustrated in@25#—that the boundaries o
the core exhibit the stickiness. However, we would like
emphasize the fact that in the present case, this proper
the system has been diagnosed with the use of coherent
in other words, by analyzing the relative evolution of tw
nearby trajectories within a specific scale~phase space ball!.
In this sense the method used is rather general, while in@25#
a more detailed knowledge of the system was necessa
capture its ‘‘hidden order.’’ To test the method even furth
we decided to apply it to the system of 16 vortices cons
ered in Sec. III. Given the previously obtained threshold
four vortices, we skipped the analysis of the distributions
sL , sD and used the similar values to attempt the detec
of a fast jet in the flow generated by 16 vortices. A jet
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effectively detected and is illustrated in Fig. 9, meaning t
the method is relatively robust since in this 16-vortex syst
the cores are much smaller. In this last figure the fluctuati
of r 2 increase towards the end because a pairing occurs
tween vortex 2 and another one; both ghosts have esc
but they may have jumped onto the other core while
tracer is still sticking, or vice versa. Besides this, we also
from Fig. 9 the actual size of the core, which is typicallyr
;0.044 and is within a reasonable range of the estim
given by the half of the minimum distance reached betwe
vortices min(rij)/2;0.06, a fact which was also observed f
3- and 4-vortex systems@24,25#.

In the following section we will explore a little further th
notion of the jets as coherent structures.

D. Jet structure analysis

In the preceding section we were able to establish tha
given tracer was evolving within what we called a jet once
given thresholdsD* for the measuredsD was reached, and
were then able to visualize the jet by recording the trace
position. In the meantime, we could also record the positi
of the ghosts. We should be then able to gather some in
mation about the inner structure of the jet. This should in
very little numerical overload other than perhaps the need
more storage space.
6-10
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FIG. 9. Distance between the tracer and vortices for coherent jets detected in the system of 16 vortices. The distance relative
2 is plotted.
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In order to take advantage of this possibility, we look
for a longer lived jet, which, for the four-vortex case, w
easier to find in the far-field region. Plots of such a lon
lived jet are presented in Fig. 10, where we can see a
structure within the jet, which seems to be formed of a h
archy of circular~tubular! jets within jets. Wondering if these
features were general or specific to these four-vortex s
tems, we decided to consider the fast jet illustrated in Fig
and check its structure. The results are plotted in Fig.
where the relative position of the ghost is plotted with d
ferent shades of grain corresponding to different time peri
of the life of the jets. We can see that effectively the nes
set of jets within jets remains, and that the ghost is a
spiraling back and forth in between. This figure is also inf
mative in the sense that we actually see the ghost going b
very close to the tracer. In other words, the area character
by the gray points close to the origin in Fig. 11 does n
correspond to the beginning of the jet and, therefore, is
an artifact of having initially placed the ghost in the vicini
of the tracer.

We shall close this section with a final remark on th
‘‘matroshka’’ structure of the jets. Namely, this nested stru
ture suggests that for each identified jet we can define a s
(r n), such thatr n is a decreasing function ofn with r n→0
andn→` and r 0 is, for instance, determined by the large
tube~jet! seen in Fig. 10 or Fig. 11. To each subjetn we can
assign a distribution of trapping timern(t) as well as a
transit timetn ~or a distribution! associated with the trace
spiraling from one subjetn to one of its two neighborsn
21 or n11. In light of this, depending on the transpo
properties, the whole system is likely to depend on the d
tributionsrn(t) and the ratior n /r n11, and if we have in the
limit n→` both r n /r n11→r ` andrn(t)→r`(t), the FSLE
become effectively independent of scale within the jet. T
hierarchical structure is also reminiscent of the discr
renormalization group and hence we can speculate tha
log-periodic oscillation described in@72# may be observed.

V. TRANSPORT PROPERTIES

A. Definitions

For the considered case, all vortices have positive stren
and, therefore, are moving within a finite domain. It is im
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portant to define what quantities will be measured to char
terize the transport properties of the system. There has b
evidence in@58# of radial diffusion, but the diffusion coeffi-
cientD vanishes asR→` with typical behaviorD;1/R6. In
the case of more than four vortices, we can still expec
similar type of behavior. However, the far-field region is
little interest when one want to address the transport pro
ties of typical geophysical flows, since the most relevan
the region being accessible to the vortices, i.e., the regio
‘‘strong chaos.’’ In fact, the same problem was faced wh
considering systems of three-point vortices. For these
ticular systems, the vortex motion is integrable, which
stricts the accessible domain of tracers to within a finite
gion surrounded by a Kol’mogorov-Arnol’d-Moser curve
The way around this problem was then to measure h
many times a tracer rotates around the origin, in other wo
to measure the diffusion along an angular direction. Ho
ever, even though suitable, this solution may face some c
cism due to the singularity present at the origin. In this pa
we consider tracer transport in the way already used w
some success in@24#. Namely, we use the arclengths(t) of
the path traveled by an individual tracer up to a timet, which
is

si~ t !5E
0

t

v i~ t8!dt8, ~24!

wherev i(t8) is the absolute speed of the particlei at timet8.
One advantage of this quantity is that it is independent of
coordinate system and as such we can expect to infer in
sic properties of the dynamics. The main observable cha
teristics will be moments of the distances(t) defined in Eq.
~24!:

Mq5Šusi~ t !2^si~ t !&uq‹, ~25!

wherei corresponds to either thei th vortex or a tracer in the
field of 4 or 16 vortices. The averaging operator^•••& needs
a special comment. Expecting anomalous transport,
should be ready to have infinite moments starting fromq
>q0. Specifically, it can beq052. The value ofq will vary
from 0 to 8. To avoid any difficulty with infinite moments
we consider truncated distribution function
6-11
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r tr~si !50, si.si* . ~26!

Condition ~26! was discussed in detail in@73# to satisfy the
physical restriction of a finite velocity. This condition pu
some constraints on the maximum valueq* of q correspond-
ing to the maximum timet* , beyond which the moments ar
basically monitoring the population of almost ballistic traje
tories.

Up to the contraints mentioned, we will always consid

FIG. 10. Relative evolution of a ghost within a long-lived j
located in the far field region of the flow generated by four vortic
~a! is a centered zoom of~b! ~see the scales!. The distribution within
the jet is clearly not uniform, suggesting a possible order organ
as ‘‘matroshkas’’~a nested set of jets with increasing radii!.
04621
r

the operation of averaging to be performed over trunca
distributions. In this perspective all moments are finite a
one can expect

Mq5Šusi~ t !2^si~ t !&uq‹;Dqtm(q) ~27!

with, generally,m(q)Þq/2 as one would expect from norma
diffusion. The nonlinear dependence ofm(q) means multi-

.

d

FIG. 11. Jet structure for a long-lived jet located in the region
strong chaos for a system of 16 vortices.~b! is a zoom of ~a!
corresponding to a magnification of an order of magnitude. T
different shades characterize different moments of the life of the
corresponding to approximately equal time intervals. They ch
nogically range as light, dark, and light. We see a similar struct
of jets within a jet as observed in Fig. 10, and ghosts spiraling b
and forth between them.
6-12
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fractality of the transport. Some authors use the notion
weak @m(q)5const3q# and strong @m(q)Þconst3q#
anomalous diffusion@69,70# or strong and weak self
similarity @74#. For more information on the appearance
multifractal kinetics and related transport, see@75,76#.

B. Vortex transport properties in 16 vortex system

Due to the low dimensionality of a system of four-poi
vortices, no typical transport behavior has been measu
but there is an analysis of the phase space topology
Poincare´ sections@25#. The results for 16 vortices were com
puted by using a number of different ‘‘equivalent’’ initia
conditions. Such different trajectories were obtained by
ting a given initial condition evolve and recording the po
tions of the vortices at different times with a given accura
~typically 1025), while making sure no vortices were in
tially involved in pairings. The strong chaoticity of the sy
tem leads very rapidly to different trajectories while th
choice of initial conditions lets us keep the constant of m
tions within a relatively small error. The transport propert
are then obtained by averaging over all vortices as wel
over different sets of trajectories that correspond to our s
cific arbitrary choice of the constants of motion. The resu
are presented in Fig. 14, where the exponent characteri
the long time power-law behavior of different moments
plotted versus moment order. The actual value of the sec
moment, which is typically used to characterize the transp
properties, is measured to bem(2)'1.80 and indicates a
strong superdiffusive behavior of the vortex subsystem. T
behavior can be linked to the pairing of vortices, which
duces a strong quasiballistic dynamics of both vortices of
pair. Indeed, let us compare the exponentg'2.68 character-
izing the distribution of time from which vortices are trapp
into a pair measured in Fig. 4, and the value correspondin
the second moment behavior from Fig. 13. We see g
agreement with the expected lawg'm(2)11 @23,67#. From
this observation we can conclude that the superdiffusive
havior of a vortex from the system of 16 vortices is related
the pairing phenomenon. Now we shall investigate the pr
erties of tracers and we start with the chaotic flow genera
by four vortices.

C. Passive tracers in a 4-vortex system

The results describing the transport properties of pas
tracers are illustrated in Fig. 12. We also observe str
anomalous behavior for the tracers with an exponent for
second momentm(2)'1.82. This behavior was previousl
observed in@23# for integrable flows driven by three vorti
ces. In this latter case, the origin of the anomalous beha
was directly linked to the presence of islands of regular m
tion within the stochastic sea and the phenomenon of sti
ness observed around them. In the present case the dr
flow is chaotic but nevertheless the existence of cores
rounding the vortices and the far-field region allows a dir
analogy and we may say that the tracer meets similar st
tures. The only difference is that some of the structure e
ments ~the cores! are ‘‘mobile.’’ Moreover, the previous
study @23,25# shows that tracers effectively stick to the vo
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tex cores, and the FTLE field presented in@58# shows that in
the far-field region the motion of tracers is quasiballist
which is a good indication of sticking behavior.

This conclusion can be strengthened by considering p
viously described jets. We have seen that the jets are loc
in the sticky regions, and are either moving around cores
jumping from core to core or rotating in the far-field regio
Since we now have ‘‘mobile’’ sticky regions traced by th
long-lived jets, which we are able to monitor, we can es
mate that the sticking time~or trapping time in the sticky
zone! is more-or-less similar to the time it takes for a gho
to escape a long-lived jet, hence the power-law behavio
the tail of the trapping time distribution characterize the e
ponentg. We then actually observe an exceptional agr
ment with the expectedg'm(2)11 relation. Hence since
the notion of jet as defined in Sec. IV is relatively gene
when compared to the notion of core or far-field region,
shall say that the anomalous diffusion finds its origin in t
existence of long-lived ‘‘coherent’’ jets of passive tracers f
the chaotic flow generated by four vortices. Since we kn
that two different types of jets exist~see Fig. 7! and are able
to differentiate them easily, in a similar manner as for t
3-vortex case@23,24# we are able to quantify the influence o
each type of jet on the transport properties of the system
discarding tracers evolving within a given type of jets. T
results of this analysis are presented in Fig. 12, plots~c! and
~d!. We can conclude that both types of jets gi

FIG. 12. Plot of different transport properties of tracers in
4-vortex system.~a! the different moments vs time are plotted fo
q51/2,1, . . . ,8. ~b! Long time exponent behavior for the differen
moments@see Eq.~25!#, with m(2)'1.83 corresponding to a supe
diffusive regime.~c! Second moment vs time; the full line corre
sponds to the full data, the dashed line is computed with all tra
tories except the parts sticking to vortices, and the dot-dashed
corresponds to all trajectories except the part sticking to the o
region.~d! Different exponents for partial data; *, outer region c
(m f51.7); 1, vortex-sticking cut (ms51.85); in both cases the
transport is anomalous and superdiffusive.
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rise to anomalous transport with very similar characteris
exponents and that they both contribute to the obser
strong anomalous diffusion.

D. Passive tracers in a 16-vortex system

In both previous cases we observed a signature of ano
lous superdiffusion withm(2)'1.8. Let us now investigate
the transport properties of passive tracers in a flow gener
by 16 identical point vortices, described partially in Sec. I
There are long-lived jets within the region of strong cha
~see Fig. 11! for the flow and the detected jet lives in th
vicinity of a vortex and probably sticks to its core. A sna
shot of the system at an early stage is given in Fig. 13, wh
effectively identifies the cores surrounding the vortices. T
results describing the transport properties of passive tra
are presented in Fig. 14 and show strong anomalous beha
with the exponentm(2)51.77.

Even though we only consider one arbitrary initial con
tion of the vortex system, it is reasonable to assume that
transport properties obtained for such a system are fa
general in the sense that they persist with an increase in
number of vortices if the probability of pairing persists. Th
implies the possibility of neglecting the occurrence of mo
complicated long-lived clustering, such as the triplet o
served in Fig. 2, quadruples, etc.

VI. CONCLUSION AND DISCUSSIONS

In this paper we have investigated the dynamical and
tistical properties of the vortex and passive particle advec
in chaotic flows generated by 4- and 16-point vortices. T

FIG. 13. Local snapshot of the system of 16 vortices with
3104 tracers. The vortices are located with the ‘‘1’’ sign. We can
see the cores surrounding the vortices. The snapshot is taken
in the simulation to prevent too much dispersion of the tracers
to visualize the core. As a consequence, we can expect the a
sizes of the cores to be a little smaller than the radius ofr'0.1 that
one can measure on the snapshot.
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goal of this work was to provide qualitative insight into ge
eral transport properties of two-dimensional flows, especia
geophysical ones, imposed by the topology of the ph
space. The system of 16 vortices can be considered
fairly large system while the 4-vortex system is the minim
one with chaotic dynamics of the vortices. The tim
averaged spatial distribution of the vortices is characteri
by a nonuniform density of vorticity, which implies stron
vortex-vortex correlation. These correlations manifest the
selves by way of a phenomenon of stickiness, namely,
formation of long-lived pairs of vortices, triplets, etc. Sinc
both these structures are integrable, we can speculate tha

rly
d
ual

FIG. 14. Large-time behavior for the different momen
^us(t)2^s(t)&uq&;tm(q). In ~a! the flow of 16-point vortices, with
m(2)'1.80 while in~b! the tracer moments for the flow driven b
the 16-point vortices, withm(2)'1.77~the slope for smallq is 1.75
and for largeq is 1.95).
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stickiness occurs by forming quasi-integrable subsets.
clusters of vortices can form a hierarchical or nested se
integrable subsets and hence impose some constraints o
frame of possible larger structures involving more vortic
The statistics of pairing time exhibits a power-law tail co
firming in that way the sticky nature of the phenomeno
which in return allows us to make an analogy with an id
dynamical system and give a good analytical estimate of
characteristic exponent of the pairing time distribution.

The chaotic nature of the governing flows did not allo
the use of diagnostics, such as Poincare´ maps or distribution
of recurrences, commonly used for systems with 1-1/2
grees of freedom, hence a technique inspired by finite-t
Lyapunov exponents diagnostics has been put into pl
Passive tracer motion is analyzed by measuring the mu
relative evolution of two nearby tracers. The possibility
tracers traveling in each other’s vicinity for relatively larg
times confirmed the presence of a hidden order for the t
ers, which we call jets. The jets can be understood as mo
clusters of particles within a specific domain where the m
tion is almost regular from a coarse-grained perspective.
chaotic nature of the motion is confined within the char
teristic scale of a given jet, where nearby tracers are trap
The distribution of trapping times in the jets shows a pow
law tail whose characteristic exponent is quantitatively v
similar to the one related to pairing times. The calcula
Lyapunov exponent for tracers within the jet’s exponents
similar to what is called finite-sized Lyapunov exponent@74#,
but in our calculations no average is taken and thus a di
bution is obtained. These distributions of the Lyapunov
ponents exhibit a finite local minimum, which results fro
the competition of the trapping in jets and the strongly c
otic motion outside the jets. The existence of this minimu
allows a dynamical test, which identifies whether a trace
trapped within a jet and thus allows one to localize the je
phase space. Jets are found to exist on the boundary o
cores surrounding the vortices as well as on the outer
the region to which vortices have no access. This behavio
analogous to the sticking behavior observed in the thr
re

ys

,
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vortex case, and thus can be incorporated into the gen
notion of the phenomenon of stickiness. The differentiat
between the two possible types of jets is determined enti
by the ratio of the corresponding pair of Lyapunov exp
nents. We thus obtain ade factodiagnostic to locate coheren
structures. The method is then successfully applied to
system of 16 vortices, leading to a possible general dyna
cal mechanism of detecting coherent structures. Fur
analysis of the structure of the jets itself reveals a com
cated nested structure of jets within jets, which indicates t
jets exist at different scales. The distribution of trappi
times within jets is computed and shows a power-law
whose characteristic exponent is similar to the one obser
for vortex pairing time. Since the trapping in jets is also
stickiness phenomenon, we may assume that the analy
estimate given for the vortex pairing time is also valid for t
trapping time within jets. The transport properties of the
vortices as well as those of the tracers in both systems
and 16 vortices are found to be anomalous with character
exponentm;1.75–1.8. We would like to mention that th
similarities found between the exponents for the tracers
the vortices in the 16-vortex system render plausible a c
sality relationship between the pairing of vortices and trac
being trapped within regular jets. All these results are
good agreement with the characteristic exponents of trapp
times and the kinetic theory presented in Refs.@23,24#.
Moreover, the transport properties are all of the multifrac
type or strongly anomalous in the sense defined in R
@69,70#. This property of the transport is a consequence
the existence of different sticky zones and the related st
tures in phase space.

ACKNOWLEDGMENTS

The authors would like to thank L. Kuznetsov for ve
useful discussions. This work was supported by the U
Navy through Grant Nos. N00014-96-1-0055 and N0001
97-1-0426, and the U.S. Department of Energy throu
Grant No. DE-FG02-92ER54184.
.

. E

ids
@1# E. W. Montroll and M. F. Schlesinger, inStudies in Statistical
Mechanics, edited by J. Lebowitz and E. W. Montroll~North-
Holland, Amsterdam, 1984!, Vol. 11, p. 1.

@2# J. P. Bouchaud and A. Georges, Phys. Rep.95, 127 ~1990!.
@3# Levy Flights and Related Topics in Physics, edited by M. F.

Shlesinger, G. M. Zaslavsky, and U. Frisch~Springer, Heidel-
berg, 1995!.

@4# M. F. Schlesinger, G. M. Zaslavasky, and J. Klafter, Natu
~London! 363, 31 ~1993!.

@5# G. Zimbardo, P. Veltri, and P. Pommois, Phys. Rev. E61, 1940
~2000!.

@6# G. Złmbardo, A. Greco, and P. Veltri, Phys. Plasmas7, 1071
~2000!.

@7# G. Manfredi, C. M. Roach, and R. O. Dendy, Plasma Ph
Controlled Fusion43, 825 ~2001!.

@8# S. V. Annibaldi, G. Manfredi, R. O. Dendy, and L. O’C Drury
.

Plasma Phys. Controlled Fusion42, L13 ~2000!.
@9# A. A. Chernikov, B. A. Petrovichev, A. V. Rogal’sky, R. Z

Sagdeev, and G. M. Zaslavsky, Phys. Lett. A144, 127 ~1990!.
@10# T. H. Solomon, E. R. Weeks, and H. L. Swinney, Physica D76,

70 ~1994!.
@11# E. R. Weeks, J. S. Urbach, and H. L. Swinney, Physica D97,

219 ~1996!.
@12# G. M. Zaslavsky, D. Stevens, and H. Weitzner, Phys. Rev

48, 1683~1993!.
@13# S. Kovalyov, Chaos10, 153 ~2000!.
@14# A. Provenzale, Annu. Rev. Fluid Mech.31, 55 ~1999!.
@15# A. J. Majda and J. P. Kramer, Phys. Rep.314, 238 ~1999!.
@16# J. B. Weiss, A. Provenzale, and J. C. McWilliams, Phys. Flu

10, 1929~1998!.
@17# P. Tabeling, A. E. Hansen, and J. Paret, inChaos, Kinetics and

Nonlinear Dynamics in Fluids and Plasma, edited by S. Ben-
6-15



ys

. E

y,

h

d

h.

.

v.

l-

u

h.

ss

nd

a

s.

ds

s.

-

II

A.

i,

i,

ky,

XAVIER LEONCINI AND GEORGE M. ZASLAVSKY PHYSICAL REVIEW E65 046216
kadda and G. Zaslavsky~Springer, New York, 1998!, p. 145.
@18# A. E. Hansen, D. Marteau, and P. Tabeling, Phys. Rev. E58,

7261 ~1998!.
@19# P. Tabeling, S. Burkhart, O. Cardoso, and H. Willaime, Ph

Rev. Lett.67, 3772~1991!.
@20# V. V. Meleshko and M. Yu. Konstantinov,Vortex Dynamics

and Chaotic Phenomena~World Scientific, Singapore, 1999!.
@21# L. Kuznetsov and G. M. Zaslavsky, Phys. Rev. E58, 7330

~1998!.
@22# Z. Neufeld and T. Te´l, J. Phys. A30, 2263~1997!.
@23# L. Kuznetsov and G. M. Zaslavsky, Phys. Rev. E61, 3777

~2000!.
@24# X. Leoncini, L. Kuznetsov, and G. M. Zaslavsky, Phys. Rev

63, 036224~2000!.
@25# A. Laforgia, X. Leoncini, L. Kuznetsov, and G. M. Zaslavsk

Eur. Phys. J. B20, 427 ~2001!.
@26# H. Aref, J. Fluid Mech.143, 1 ~1984!.
@27# G. M. Zaslavsky, R. Z. Sagdeev, and A. A. Chernikov, Z
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